Page 227 - IJB-8-3
P. 227

Villapún, et al.
               https://doi.org/10.1016/j.actamat.2021.117240   74.  Zhang  L,  Zhu  H,  Liu  J, et al., 2018, Track Evolution and
           68.  Strano G, Hao L, Everson RM, et al., 2013, Surface   Surface Characteristics of Selective Laser Melting Ti6Al4V.
               Roughness Analysis, Modelling and Prediction in Selective   Rapid Prototyp J, 24:1554–62.
               Laser Melting. J Mater Process Technol, 213:589–97.  75.  Maleki E, Bagherifard S, Bandini M, et al., 2020, Surface
               https://doi.org/10.1016/j.jmatprotec.2012.11.011    Post-treatments for Metal Additive Manufacturing: Progress,
           69.  Hoejin  K,  Yirong  Lin  Y,  Tseng  TL,  2018,  A  Review  on   Challenges, and Opportunities. Addit Manuf, 37:101619.
               Quality Control in Additive Manufacturing. Rapid Prototyp      https://doi.org/10.1016/j.addma.2020.101619
               J, 45:102058.                                   76.  Qiu C, Fones A, Hamilton HG, et al., 2016, A New Approach
           70.  Nancharaiah TR, Raju DR, Raju VR, 2010, An Experimental   to  Develop  Palladium-modified  Ti-based  Alloys  for
               Investigation on Surface Quality and Dimensional Accuracy   Biomedical Applications. Mater Des, 109:98–111.
               of FDM Components. Int J Emerg Technol, 1:106–11.     https://doi.org/10.1016/j.matdes.2016.07.055
           71.  Yasa E, Poyraz O, Solakoglu EU, et al., 2016, A Study on   77.  Hedayati  R, Sadighi M, Mohammadi-Aghdam  M, et al.,
               the Stair Stepping Effect in Direct Metal Laser Sintering of a   2018, Comparison of Elastic Properties of Open-cell Metallic
               Nickel-based Superalloy. Proc CIRP, 45:175–8.
               https://doi.org/10.1016/j.procir.2016.02.068        Biomaterials with Different Unit Cell Types. J Biomed Mater
           72.  Chen  Z,  Xiang  Y,  Wei  Z, et  al., 2018,  Thermal  Dynamic   Res B, 106:386–98.
               Behavior during Selective Laser Melting of K418 Superalloy:      https://doi.org/10.1002/jbm.b.33854
               Numerical  Simulation  and  Experimental  Verification.  Appl   78.  Deing A, Luthringer  B, Laipple D, et al., 2014, A Porous
               Phyis A, 124:1–16.                                  TiAl6V4 Implant  Material  for Medical  Application.  Int J
               https://doi.org/10.1007/s00339-018-1737-8           Biomater, 2014:904230
           73.  Pal S L, Ojen G, Hudak R, et al., 2020, As-fabricated Surface      https://doi.org/10.1155/2014/904230
               Morphologies of Ti-6Al-4V Samples Fabricated by Different   79.  Maietta  S, Gloria  A, Improta  G, et  al., 2019,  A Further
               Laser Processing Parameters  in Selective  Laser Melting.   Analysis on  Ti6Al4V Lattice  Structures Manufactured  by
               Addit Manuf, 33:101147.                             Selective Laser Melting. J Healthc Eng, 2019:3212594.
               https://doi.org/10.1016/j.addma.2020.101147         https://doi.org/10.1155/2019/3212594
































                                                               Publisher’s note
                                                               Whioce  Publishing remains neutral  with regard to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3       219
   222   223   224   225   226   227   228   229   230   231   232