Page 354 - IJB-8-4
P. 354

Three-Dimensional Printing Technologies for Drug Delivery Applications
                Network-based Anomaly Detection and Quality Control for   144.  Elbadawi  M, McCoubrey LE, Gavins FK,  et  al., 2021,
                Fused Filament Fabrication Process. Virtual Phys Prototyp,   Disrupting 3D Printing of Medicines  with Machine
                16:160–77.                                          Learning. Trends Pharmacol Sci, 42:745–57.
           140.  An J, Chua CK, Mironov V, 2021, Application of Machine      https://doi.org/10.1016/j.tips.2021.06.002
                Learning in 3D Bioprinting: Focus on Development of Big   145.  Simões MF, Silva G, Pinto AC, et al., 2020, Artificial Neural
                Data and Digital Twin. Int J Bioprint, 7:342.       Networks Applied to Quality-by-Design: From Formulation
                https://doi.org/10.18063/ijb.v7i1.342               Development to Clinical Outcome. Eur J Pharm Biopharm,
           141.  Fu Z,  Angeline  V, Sun  W, 2021, Evaluation  of Printing   152:282–95.
                Parameters on 3D Extrusion Printing of Pluronic Hydrogels      https://doi.org/10.1016/j.ejpb.2020.05.012
                and Machine Learning Guided Parameter Recommendation.   146.  Sarabi MR, Alseed MM, Karagoz AA, et al., 2022, Machine
                Int J Bioprint, 7:434.                              Learning-enabled  Prediction of 3D-printed Microneedle
                https://doi.org/10.18063/ijb.v7i4.434               Features. Biosensors, 12:491.
           142.  Dong G,  Yeong  WY, 2022,  Applications  of Machine      https://doi.org/10.3390/bios12070491
                Learning in 3D Printing. Mater Today Proceed, 54:2214–  147.  Ahmed A, Arya  S,  Gupta  V,  et al., 2021, 4D Printing:
                7853.                                               Fundamentals,  Materials,  Applications  and  Challenges.
                https://doi.org/10.1016/j.matpr.2022.08.551         Polymer, 228:123926.
           143.  Rahmani S, Ozcan O, Tasoglu S, 2022, Machine Learning-     https://doi.org/10.1016/j.polymer.2021.123926
                Enabled  Optimization of Extrusion-Based  3D printing.   148.  Chua CK, 2020, Publication Trends in 3D Bioprinting and
                Methods, 206:27–40.                                 3D Food Printing. Int J Bioprint, 6:257.
                https://doi.org/10.1016/j.ymeth.2022.08.002         https://doi.org/10.18063/ijb.v6i1.257








































                                                              Publisher’s note
                                                              Whioce  Publishing remains neutral  with regard to
                                                              jurisdictional claims in published maps and institutional
                                                              affiliations.

           346                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   349   350   351   352   353   354   355   356   357   358   359