Page 69 - IJB-8-4
P. 69

Fang, et al.
           47.  Albini A, Bruno A, Gallo C, et al., 2015, Cancer Stem Cells      https://doi.org/10.3390/cells7120236
               and the  Tumor Microenvironment: Interplay  in  Tumor   59.  Nallanthighal S, Heiserman JP, Cheon DJ, 2019, The Role of
               Heterogeneity. Connect Tissue Res, 56:414–25.       the Extracellular Matrix in Cancer Stemness. Front Cell Dev
               https://doi.org/10.3109/03008207.2015.1066780       Biol, 7:86.
           48.  de Lope LR, Alcíbar OL, López AA, et al., 2018, Tumour-     https://doi.org/10.3389/fcell.2019.00086
               adipose  Tissue  Crosstalk:  Fuelling  Tumour  Metastasis  by   60.  Tsai  HF, Trubelja A, Shen AQ, 2017, Tumour-On-A-Chip:
               Extracellular Vesicles. Philos Trans R Soc London Ser B Biol   Microfluidic  Models  of  Tumour  Morphology,  Growth  and
               Sci, 373:20160485.                                  Microenvironment. J R Soc Interface, 14:20170137.
               https://doi.org/10.1098/rstb.2016.0485              https://doi.org/10.1098/rsif.2017.0137
           49.  Ribeiro  AL,  Okamoto  OK,  2015,  Combined  Effects  of   61.  Shoemaker RH, 2016, The NCI60 Human Tumour Cell Line
               Pericytes  in the  Tumor Microenvironment.  Stem Cells  Int,   Anticancer Drug Screen. Nat Rev Cancer, 6:813–23.
               2015:868475.                                        https://doi.org/10.1038/nrc1951
               https://doi.org/10.1155/2015/868475             62.  Liu X, Fang J, Huang S, et al., 2021, Tumor-on-a-chip: From
           50.  Barrow  AD,  Colonna M,  2019, Exploiting NK  Cell   Bioinspired Design to Biomedical  Application.  Microsyst
               Surveillance Pathways for Cancer Therapy. Cancers, 11:55.  Nanoeng, 7:50.
               https://doi.org/10.3390/cancers11010055             https://doi.org/10.1038/s41378-021-00277-8
           51.  Mravic M, Asatrian G, Soo C, et al., 2014, From Pericytes to   63.  Kapalczynska M, Kolenda T, Przybyla W, et al., 2018, 2D
               Perivascular Tumours: Correlation Between Pathology, Stem   and 3D Cell Cultures-A Comparison of Different Types of
               Cell Biology, and Tissue Engineering. Int Orthop, 38:1819–24.  Cancer Cell Cultures. Arch Med Sci, 14:910.
               https://doi.org/10.1007/s00264-014-2295-0       64.  Ryan SL, Baird AM, Vaz  G,  et  al., 2016, Drug Discovery
           52.  Insua-Rodriguez J, Oskarsson  T, 2016,  The Extracellular   Approaches Utilizing Three-Dimensional Cell Culture. Assay
               Matrix in Breast Cancer. Adv Drug Deliv Rev, 97:41–55.  Drug Dev Technol, 14:19–28.
               https://doi.org/10.1016/j.addr.2015.12.017          https://doi.org/10.1089/adt.2015.670
           53.  Cheng YQ, Wang SB, Liu JH, et al., 2020, Modifying the   65.  Brancato V, Oliviera JM, Correlo VM, et al., 2020, Could 3D
               Tumour Microenvironment and Reverting  Tumour Cells:   Models of Cancer Enhance Drug Screening? Biomaterials,
               New Strategies for Treating Malignant Tumours. Cell Prolif,   232:119744.
               53:e12865.                                          https://doi.org/10.1016/j.biomaterials.2019.119744
               https://doi.org/10.1111/cpr.12865               66.  Skardal  A, Devarasetty  M, Forsythe S,  et al.,  2016, A
           54.  Trivanovic D, Krstic J, Djordjevic  IO,  et al.,  2016, The   Reductionist  Metastasis-on-a-chip Platform for  In Vitro
               Roles of Mesenchymal  Stromal/Stem  Cells  in  Tumor   Tumor Progression Modeling and Drug Screening. Biotechnol
               Microenvironment Associated with Inflammation. Mediators   Bioeng, 113:2020–32.
               Inflamm, 2016:7314016.                              https://doi.org/10.1002/bit.25950
           55.  Sangaletti S, Chiodoni C, Tripodo C, et al., 2017, Common   67.  Saglam-Metiner  P, Gulce-Iz S,  Biray-Avci C, 2019,
               Extracellular Matrix Regulation of Myeloid Cell Activity in   BioengineeringnInspired  Threegdimensional  Culture
               the Bone Marrow  and  Tumor Microenvironments.  Cancer   Systems:  Organoids  to  Create  Tumor  Microenvironment.
               Immunol Immunother, 66:1059–67.                     Gene, 686:203–12.
               https://doi.org/10.1007/s00262-017-2014-y           https://doi.org/10.1016/j.gene.2018.11.058
           56.  Mohammadi H, Sahai E, 2018, Mechanisms and Impact of   68.  Carvalho V, Maia I, Souza A, et al., 2020, In Vitro Stenotic
               Altered Tumour Mechanics. Nat Cell Bio, 20:766–74.  Arteries to Perform Blood Analogues Flow Visualizations and
               https://doi.org/10.1038/s41556-018-0131-2           Measurements: A Review. Open Biomed Eng J, 14:87–102.
           57.  Levental KR, Yu H, Kass L, et al., 2009, Matrix Crosslinking      https://doi.org/10.2174/1874120702014010087
               Forces Tumor Progression by Enhancing Integrin Signaling.   69.  Friedrich J, Seidel C, Ebner R, et al., 2009, Spheroid-Based
               Cell, 139:891-906.                                  Drug Screen:  Considerations  and  Practical  Approach.  Nat
               https://doi.org/10.1016/j.cell.2009.10.027          Protoc, 4:309–24.
           58.  Masola V, Bellin G, Gambaro G, et al., 2018, Heparanase:      https://doi.org/10.1038/nprot.2008.226
               A  Multitasking  Protein Involved in Extracellular  Matrix   70.  Costa EC, Moreira AF, de Melo-Diogo D, et al., 2016, 3D
               (ECM) Remodeling and Intracellular Events. Cell, 7:236.  Tumor Spheroids: An Overview on the Tools and Techniques

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4        61
   64   65   66   67   68   69   70   71   72   73   74