Page 351 - IJB-9-2
P. 351

International Journal of Bioprinting                            Characterization of BITC antibacterial hydrogel


               https://doi.org/10.1016/S0309-1740(03)00132-3      https://doi.org/10.2217/fmb.15.69
            37.  Pearce KL, Rosenvold K, Andersen HJ, et al., 2011, Water   43.  Tu C, Wang Y, Yi L, et al., 2019, Roles of signaling molecules
               distribution and mobility in meat during the conversion of   in biofilm formation.  Sheng Wu Gong Cheng Xue Bao,
               muscle to meat and ageing and the impacts on fresh meat   35: 558–566.
               quality attributes--a review. Meat Sci, 89: 111–124.      https://doi.org/10.13345/j.cjb.180326
               https://doi.org/10.1016/j.meatsci.2011.04.007   44.  Del Pozo JL, 2018, Biofilm-related disease. Expert Rev Anti
            38.  Yang KC, Wu CC, Cheng YH, et al., 2008, Chitosan/gelatin   Infect Ther, 16: 51–65.
               hydrogel prolonged the function of insulinoma/agarose      https://doi.org/10.1080/14787210.2018.1417036
               microspheres  in vivo during xenogenic transplantation.
               Transplant Proc, 40: 3623–3626.                 45.  Church D, Elsayed S, Reid O,  et al., 2006, Burn wound
                                                                  infections. Clin Microbiol Rev, 19: 403–434.
               https://doi.org/10.1016/j.transproceed.2008.06.092
                                                                  https://doi.org/10.1128/CMR.19.2.403-434.2006
            39.  Chen F, Chen C, Zhao D, et al., 2020, On-line monitoring
               of the sol-gel transition temperature of thermosensitive   46.  Lachiewicz AM, Hauck CG, Weber DJ, et al., 2017, Bacterial
               chitosan/β-glycerophosphate hydrogels by low field NMR.   infections after burn injuries: Impact of multidrug resistance.
               Carbohydr Polym, 238: 116196.                      Clin Infect Dis, 65: 2130–2136.
               https://doi.org/10.1016/j.carbpol.2020.116196      https://doi.org/10.1093/cid/cix682
            40.  Kooistra-Smid AM, van Zanten E, Ott A,  et al., 2008,   47.  Chen K, Lin S, Li P,  et al., 2018, Characterization of
               Prevention of Staphylococcus aureus burn wound colonization   Staphylococcus aureus isolated from patients with burns in
               by nasal mupirocin. Burns, 34: 835–839.            a regional burn center, Southeastern China.  BMC  Infect
                                                                  Dis, 18: 51.
               https://doi.org/10.1016/j.burns.2007.09.011
                                                                  https://doi.org/10.1186/s12879-018-2955-6
            41.  Azzopardi  EA,  Azzopardi  E,  Camilleri  L,  et al.,  2014,
               Gram negative wound infection in hospitalised adult burn   48.  Reardon CM, Brown TP, Stephenson AJ,  et al., 1998,
               patients--systematic review and metanalysis-.  PloS One,   Methicillin-resistant  Staphylococcus  aureus in  burns
               9: e95042.                                         patients--why all the fuss? Burns, 24: 393–397.
                                                                  https://doi.org/10.1016/s0305-4179(98)00036-9
               https://doi.org/10.1371/journal.pone.0095042
                                                               49.  Chanda A, 2018, Biomechanical modeling of human skin
            42.  Venkatesan N, Perumal G, Doble M, 2015, Bacterial
               resistance in biofilm-associated bacteria. Future Microbiol,   tissue surrogates. Biomimetics (Basel), 3: 18.
               10: 1743–1750.                                     https://doi.org/10.3390/biomimetics3030018



































            Volume 9 Issue 2 (2023)                        343                      https://doi.org/10.18063/ijb.v9i2.671
   346   347   348   349   350   351   352   353   354   355   356