Page 151 - IJB-9-3
P. 151
International Journal of Bioprinting Bioprinting tissue-engineered bone-periosteum biphasic complex.
https://doi.org/10.1002/term.489 26. Zhang W, Wang N, Yang M, et al., 2022, Periosteum and
development of the tissue-engineered periosteum for guided
16. Liu Y, Chan JK, Teoh SH, 2015, Review of vascularised bone bone regeneration. J Orthop Translat, 33:41–54.
tissue-engineering strategies with a focus on co-culture
systems. J Tissue Eng Regen Med, 9(2):85–105. https://doi.org/10.1016/j.jot.2022.01.002
https://doi.org/10.1002/term.1617 27. Hadjidakis DJ, Androulakis, II, 2006, Bone remodeling. Ann
N Y Acad Sci, 1092:385–396.
17. Borciani G, Montalbano G, Baldini N, et al., 2020, Co-
culture systems of osteoblasts and osteoclasts: Simulating https://doi.org/10.1196/annals.1365.035
in vitro bone remodeling in regenerative approaches. Acta 28. Marx RE, 2007, Bone and bone graft healing. Oral Maxillofac
Biomater, 108:22–45. Surg Clin North Am, 19(4):455–466, v.
https://doi.org/10.1016/j.actbio.2020.03.043 https://doi.org/10.1016/j.coms.2007.07.008
18. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting 29. Colnot C, 2009, Skeletal cell fate decisions within periosteum
for engineering complex tissues. Biotechnol Adv, 34(4): and bone marrow during bone regeneration. J Bone Miner
422–434. Res, 24(2):274–282.
https://doi.org/10.1016/j.biotechadv.2015.12.011 https://doi.org/10.1359/jbmr.081003
19. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and 30. Chehelcheraghi F, Chien S, Bayat M, 2019, Mesenchymal
organs. Nat Biotechnol, 32(8):773–785. stem cells improve survival in ischemic diabetic random
skin flap via increased angiogenesis and VEGF expression.
https://doi.org/10.1038/nbt.2958
J Cell Biochem, 120(10):17491–17499.
20. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
Synthesis, properties, and biomedical applications of https://doi.org/10.1002/jcb.29013
gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73: 31. Kanno T, Takahashi T, Ariyoshi W, et al., 2005, Tensile
254–271. mechanical strain up-regulates Runx2 and osteogenic
factor expression in human periosteal cells: Implications for
https://doi.org/10.1016/j.biomaterials.2015.08.045
distraction osteogenesis. J Oral Maxillofac Surg, 63(4):499–504.
21. Sun M, Sun X, Wang Z, et al., 2018, Synthesis and properties https://doi.org/10.1016/j.joms.2004.07.023
of gelatin methacryloyl (GelMA) gydrogels and their
recent applications in load-bearing tissue. Polymers (Basel), 32. Veeriah V, Paone R, Chatterjee S, et al., 2019, Osteoblasts
10(11):1290. regulate angiogenesis in response to mechanical unloading.
Calcif Tissue Int, 104(3):344–354.
https://doi.org/10.3390/polym10111290
https://doi.org/10.1007/s00223-018-0496-z
22. Zhao D, Jiang W, Wang Y, et al., 2020, Three-dimensional-
printed poly-L-lactic acid scaffolds with different pore sizes 33. Tabbaa SM, Horton CO, Jeray KJ, et al., 2014, Role of
influence periosteal distraction osteogenesis of a rabbit vascularity for successful bone formation and repair. Crit
skull. Biomed Res Int, 2020:7381391. Rev Biomed Eng, 42(3-4):319–348.
https://doi.org/10.1615/critrevbiomedeng.2014011662
https://doi.org/10.1155/2020/7381391
34. Dixon DT, Gomillion CT, 2021, Conductive scaffolds for
23. Debnath S, Yallowitz AR, McCormick J, et al., 2018, Discovery
of a periosteal stem cell mediating intramembranous bone bone tissue engineering: Current state and future outlook. J
Funct Biomater, 13(1):1.
formation. Nature, 562(7725):133–139.
https://doi.org/10.3390/jfb13010001
https://doi.org/10.1038/s41586-018-0554-8
35. Elhattab K, Bhaduri SB, Sikder P, 2022, Influence of fused
24. Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low- deposition modelling nozzle temperature on the rheology
concentration cell-laden gelatin methacrylate (GelMA) and mechanical properties of 3D printed beta-tricalcium
bioinks with a two-step cross-linking strategy. ACS Appl phosphate (TCP)/polylactic acid (PLA) composite. Polymers
Mater Interfaces, 10(8):6849–6857. (Basel), 14(6):1222.
https://doi.org/10.1021/acsami.7b16059 https://doi.org/10.3390/polym14061222
25. Valtanen RS, Yang YP, Gurtner GC, et al., 2021, Synthetic 36. Ngo HX, Bai Y, Sha J, et al., 2021, A narrative review of
and bone tissue engineering graft substitutes: What is the u-HA/PLLA, a bioactive resorbable reconstruction material:
future? Injury, 52(Suppl 2):S72–S77. Applications in oral and maxillofacial surgery. Materials
https://doi.org/10.1016/j.injury.2020.07.040 (Basel), 15(1):150.
https://doi.org/10.3390/ma15010150
Volume 9 Issue 3 (2023) 143 https://doi.org/10.18063/ijb.698

