Page 151 - IJB-9-3
P. 151

International Journal of Bioprinting               Bioprinting tissue-engineered bone-periosteum biphasic complex.



               https://doi.org/10.1002/term.489                26.  Zhang W, Wang N, Yang M, et al., 2022, Periosteum and
                                                                  development of the tissue-engineered periosteum for guided
            16.  Liu Y, Chan JK, Teoh SH, 2015, Review of vascularised bone   bone regeneration. J Orthop Translat, 33:41–54.
               tissue-engineering strategies with a focus on co-culture
               systems. J Tissue Eng Regen Med, 9(2):85–105.      https://doi.org/10.1016/j.jot.2022.01.002
               https://doi.org/10.1002/term.1617               27.  Hadjidakis DJ, Androulakis, II, 2006, Bone remodeling. Ann
                                                                  N Y Acad Sci, 1092:385–396.
            17.  Borciani  G,  Montalbano  G,  Baldini  N,  et  al.,  2020,  Co-
               culture systems  of osteoblasts  and osteoclasts:  Simulating   https://doi.org/10.1196/annals.1365.035
               in vitro bone remodeling in regenerative approaches. Acta   28.  Marx RE, 2007, Bone and bone graft healing. Oral Maxillofac
               Biomater, 108:22–45.                               Surg Clin North Am, 19(4):455–466, v.
               https://doi.org/10.1016/j.actbio.2020.03.043       https://doi.org/10.1016/j.coms.2007.07.008
            18.  Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting   29.  Colnot C, 2009, Skeletal cell fate decisions within periosteum
               for engineering complex tissues.  Biotechnol Adv, 34(4):   and bone marrow during bone regeneration. J Bone Miner
               422–434.                                           Res, 24(2):274–282.
               https://doi.org/10.1016/j.biotechadv.2015.12.011   https://doi.org/10.1359/jbmr.081003
            19.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and   30.  Chehelcheraghi F, Chien S, Bayat M, 2019, Mesenchymal
               organs. Nat Biotechnol, 32(8):773–785.             stem cells improve survival in ischemic diabetic random
                                                                  skin flap via increased angiogenesis and VEGF expression.
               https://doi.org/10.1038/nbt.2958
                                                                  J Cell Biochem, 120(10):17491–17499.
            20.  Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
               Synthesis, properties, and biomedical applications of   https://doi.org/10.1002/jcb.29013
               gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73:   31.  Kanno T, Takahashi T, Ariyoshi W, et al., 2005, Tensile
               254–271.                                           mechanical  strain  up-regulates  Runx2  and  osteogenic
                                                                  factor expression in human periosteal cells: Implications for
               https://doi.org/10.1016/j.biomaterials.2015.08.045
                                                                  distraction osteogenesis. J Oral Maxillofac Surg, 63(4):499–504.
            21.  Sun M, Sun X, Wang Z, et al., 2018, Synthesis and properties   https://doi.org/10.1016/j.joms.2004.07.023
               of  gelatin  methacryloyl  (GelMA)  gydrogels  and  their
               recent applications in load-bearing tissue. Polymers (Basel),    32.  Veeriah V, Paone R, Chatterjee S, et al., 2019, Osteoblasts
               10(11):1290.                                       regulate angiogenesis in response to mechanical unloading.
                                                                  Calcif Tissue Int, 104(3):344–354.
               https://doi.org/10.3390/polym10111290
                                                                  https://doi.org/10.1007/s00223-018-0496-z
            22.  Zhao D, Jiang W, Wang Y, et al., 2020, Three-dimensional-
               printed poly-L-lactic acid scaffolds with different pore sizes   33.  Tabbaa SM, Horton CO, Jeray KJ, et al., 2014, Role of
               influence periosteal distraction osteogenesis of a rabbit   vascularity for successful bone formation and repair.  Crit
               skull. Biomed Res Int, 2020:7381391.               Rev Biomed Eng, 42(3-4):319–348.
                                                                  https://doi.org/10.1615/critrevbiomedeng.2014011662
               https://doi.org/10.1155/2020/7381391
                                                               34.  Dixon DT, Gomillion CT, 2021, Conductive scaffolds for
            23.  Debnath S, Yallowitz AR, McCormick J, et al., 2018, Discovery
               of a periosteal stem cell mediating intramembranous bone   bone tissue engineering: Current state and future outlook. J
                                                                  Funct Biomater, 13(1):1.
               formation. Nature, 562(7725):133–139.
                                                                  https://doi.org/10.3390/jfb13010001
               https://doi.org/10.1038/s41586-018-0554-8
                                                               35.  Elhattab K, Bhaduri SB, Sikder P, 2022, Influence of fused
            24.  Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low-  deposition modelling nozzle temperature on the rheology
               concentration cell-laden gelatin methacrylate (GelMA)   and mechanical properties of 3D printed beta-tricalcium
               bioinks with a two-step cross-linking strategy.  ACS Appl   phosphate (TCP)/polylactic acid (PLA) composite. Polymers
               Mater Interfaces, 10(8):6849–6857.                 (Basel), 14(6):1222.
               https://doi.org/10.1021/acsami.7b16059             https://doi.org/10.3390/polym14061222
            25.  Valtanen RS, Yang YP, Gurtner GC, et al., 2021, Synthetic   36.  Ngo HX, Bai Y, Sha J, et al., 2021, A narrative review of
               and bone tissue engineering graft substitutes: What is the   u-HA/PLLA, a bioactive resorbable reconstruction material:
               future? Injury, 52(Suppl 2):S72–S77.               Applications in oral and maxillofacial surgery.  Materials
               https://doi.org/10.1016/j.injury.2020.07.040       (Basel), 15(1):150.
                                                                  https://doi.org/10.3390/ma15010150




            Volume 9 Issue 3 (2023)                        143                          https://doi.org/10.18063/ijb.698
   146   147   148   149   150   151   152   153   154   155   156