Page 279 - IJB-9-3
P. 279

International Journal of Bioprinting                            Performance of Bredigite-based bone scaffolds



            39.  Sarraf F, Hadian A, Churakov SV,  et  al., 2022, EVA-PVA   45.  Baino F, Yamaguchi S, 2020, The use of simulated body
               binder system for polymer derived mullite made by material   fluid (SBF) for assessing materials bioactivity in the context
               extrusion based additive manufacturing. J Eur Ceram Soc,   of tissue engineering: Review and challenges. Biomimetics
               43:530-541.                                        (Basel), 5–57.
               https://doi.org/10.1016/j.jeurceramsoc.2022.10.009  https://doi.org/10.3390/biomimetics5040057
            40.  Zhang Y, Tse C, Rouholamin D, et al., 2012, Scaffolds for   46.  Wu C, Chang J, Wang J, et al., 2005, Preparation and
               tissue engineering produced by inkjet printing. Cent Eur J   characteristics of a calcium magnesium silicate. Biomaterials,
               Eng, 2:325–335.                                    26:2925–2931.
               https://doi.org/10.2478/s13531-012-0016-2
                                                                  https://doi.org/10.1016/j.biomaterials.2004.09.019
            41.  Mora S, Pugno NM, Misseroni D, 2022, 3D printed
               architected lattice structures by material jetting.  Mater   47.  Eilbagi M, Emadi R, Raeissi K, et al., 2016, Mechanical and
               Today Chem, 59:107-132.                            cytotoxicity evaluation of nanostructured hydroxyapatite-
                                                                  bredigite scaffolds for bone regeneration. Mater Sci Eng C,
               https://doi.org/10.1016/j.mattod.2022.05.008       68:603–612.
            42.  Ng WL, Lee JM, Zhou M, et al., 2019, Vat polymerization-
               based bioprinting—Process, materials, applications and   https://doi.org/10.1016/j.msec.2016.06.030
               regulatory challenges. Biofabrication, 2:022001.  48.  Sopcak  T,  Shepa  I,  Csan´Adi  T, et al.,  2022,  Influence  of
               https://doi.org/10.1088/1758-5090/ab6034           boron addition on the phase transformation, microstructure,
                                                                  mechanical and in-vitro cellular properties of bredigite-type
            43.  Piedra-Cascón W, Krishnamurthy VR, Att W, et al., 2021,   coatings deposited by a spin coating technique. Mater Chem
               3D printing parameters, supporting structures, slicing, and   Phys, 283: 126049.
               post-processing procedures of vat-polymerization additive
               manufacturing  technologies:  A  narrative  review.  J Dent,   https://doi.org/10.1016/j.matchemphys.2022.126049
               109:103630.
               https://doi.org/10.1016/j.jdent.2021.103630
            44.  Shen Z, Yu T, Ye J, 2014, Microstructure and properties of
               alendronate-loaded calcium phosphate cement. Mat Sci Eng
               C Mater, 42:303–311.
               https://doi.org/10.1016/j.msec.2014.05.043





































            Volume 9 Issue 3 (2023)                        271                         https://doi.org/10.18063/ijb.708
   274   275   276   277   278   279   280   281   282   283   284