Page 278 - IJB-9-3
P. 278
International Journal of Bioprinting Performance of Bredigite-based bone scaffolds
tomography, histological analyses, raman spectroscopy of polycaprolactone/bredigite composite coating on
and synchrotron infrared imaging. Materials (Basel), biodegradable Mg-Zn-CaGNP nanocomposite. Prog Org
13:4275. Coat, 147:105822.
https://doi.org/10.3390/ma13194275 https://doi.org/10.1016/j.porgcoat.2020.105822
19. Gremare A, Guduric V, Bareille R, et al., 2018, 30. Maconachie T, Leary M, Lozanovski B, et al., 2019, SLM
Characterization of printed PLA scaffolds for bone tissue lattice structures: Properties, performance, applications and
engineering. J Biomed Mater Res A, 106:887–894. challenges. Mater Design, 183:108137.
https://doi.org/10.1002/jbm.a.36289 https://doi.org/10.1016/j.matdes.2019.108137
20. Qu H, Fu H, Han Z, et al., 2019, Biomaterials for bone tissue 31. Yánez A, Cuadrado A, Martel O, et al., 2018, Gyroid
engineering scaffolds: A review. RSC Adv, 9:26252–26262. porous titanium structures: A versatile solution to be used
as scaffolds in bone defect reconstruction. Mater Design,
https://doi.org/10.1039/c9ra05214c
140:21-29.
21. Safari B, Aghanejad A, Kadkhoda J, et al., 2022, https://doi.org/10.1016/j.matdes.2017.11.050
Biofunctional phosphorylated magnetic scaffold for bone
tissue engineering. Colloid Surf B, 211:112284. 32. Ma S, Tang Q, Han X, et al., 2020, Manufacturability,
mechanical properties, mass-transport properties and
https://doi.org/10.1016/j.colsurfb.2021.112284
biocompatibility of triply periodic minimal surface (TPMS)
22. Asadniaye Fardjahromi M, Nazari H, Ahmadi Tafti SM, porous scaffolds fabricated by selective laser melting. Mater
et al., 2022, Metal-organic framework-based nanomaterials Design, 195:109034.
for bone tissue engineering and wound healing. Mater Today https://doi.org/10.1016/j.matdes.2020.109034
Chem, 23:100670.
33. Jadidi A, Salahinejad E, 2020, Mechanical strength and
https://doi.org/10.1016/j.mtchem.2021.100670
biocompatibility of bredigite (Ca MgSi O ) tissue-
16
4
7
23. Mi S, Hu X, Lin Z, et al., 2021, Shape memory PLLA-TMC/ engineering scaffolds modified by aliphatic polyester
CSH-dPA microsphere scaffolds with mechanical and coatings. Ceram Int, 46:16439-16446.
bioactive enhancement for bone tissue engineering. Colloid https://doi.org/10.1016/j.ceramint.2020.03.206
Surf A, 622:126594.
34. Ngo TD, Kashani A, Imbalzano G, et al., 2018, Additive
https://doi.org/10.1016/j.colsurfa.2021.126594 manufacturing (3D printing): A review of materials,
24. Xu HH, Wang P, Wang L, et al., 2017, Calcium phosphate methods, applications and challenges. Compos Part B Eng,
cements for bone engineering and their biological properties. 143:172–196.
Bone Res, 5:17056. https://doi.org/10.1016/j.compositesb.2018.02.012
https://doi.org/10.1038/boneres.2017.56 35. Lin YH, Lee AK, Ho CC, et al., 2022, The effects of a
25. Ng WL, Chua CK, Shen Y-F, 2019, Print me an organ! Why 3D-printed magnesium-/strontium-doped calcium silicate
we are not there yet. Prog Polym Sci, 97:101145. scaffold on regulation of bone regeneration via dual-
stimulation of the AKT and WNT signaling pathways.
https://doi.org/10.1016/j.progpolymsci.2019.101145 Mater Sci Eng C Mater Biol Appl, 183:112660.
26. Vallet-Regı´ M, Salinas AJ, Roma´ NJ, et al., 1998, Effect https://doi.org/10.1016/j.msec.2022.112660
of magnesium content on the in vitro bioactivity of CaO–
MgO–SiO –P O sol–gel glasses. J Mater Chem, 9:515–518. 36. Carluccio D, Demir AG, Bermingham MJ, et al., 2020,
2 2 5 Challenges and opportunities in the selective laser melting
27. Srinath P, Azeem PA, Reddy KV, 2020, Review on calcium of biodegradable metals for load-bearing bone scaffold
silicate-based bioceramics in bone tissue engineering. Int J applications. Metall Mater Trans A.
Appl Ceram Tec, 17:2450-2464.
https://doi.org/10.1007/s11661-020-05796-z
https://doi.org/10.1111/IJAC.13577
37. Tan C, Li S, Essa K, et al., 2019, Laser powder bed fusion
28. Akram N, Mohammad K, Moosa J, et al., 2022, Fabrication of Ti-rich TiNi lattice structures: Process optimisation,
of functional and nano-biocomposite scaffolds using geometrical integrity, and phase transformations. Int J Mach
strontium-doped bredigite nanoparticles/polycaprolactone/ Tool Manuf, 141:19–29.
poly lactic acid via 3D printing for bone regeneration. Int J
Biol Macromol, 219:1319-1336. https://doi.org/10.1016/j.ijmachtools.2019.04.002
https://doi.org/10.1016/j.ijbiomac.2022.08.136 38. Ning LQ, Chen XB, 2017, A brief review of extrusion-based
tissue scaffold bio-printing. Biotechnol J, 12: 1600671.
29. Saberi A, Bakhsheshi-Rad HR, Karamian E, et al., 2020, A
study on the corrosion behavior and biological properties https:// doi.org/: 10.1002/biot.201600671
Volume 9 Issue 3 (2023) 270 https://doi.org/10.18063/ijb.708

