Page 278 - IJB-9-3
P. 278

International Journal of Bioprinting                            Performance of Bredigite-based bone scaffolds



               tomography, histological  analyses,  raman  spectroscopy   of  polycaprolactone/bredigite  composite coating  on
               and synchrotron infrared imaging.  Materials  (Basel),    biodegradable Mg-Zn-CaGNP nanocomposite.  Prog Org
               13:4275.                                           Coat, 147:105822.
               https://doi.org/10.3390/ma13194275                 https://doi.org/10.1016/j.porgcoat.2020.105822
            19.  Gremare A, Guduric V, Bareille R, et al., 2018,   30.  Maconachie T, Leary M, Lozanovski B, et al., 2019, SLM
               Characterization of printed PLA scaffolds for bone tissue   lattice structures: Properties, performance, applications and
               engineering. J Biomed Mater Res A, 106:887–894.    challenges. Mater Design, 183:108137.
               https://doi.org/10.1002/jbm.a.36289                https://doi.org/10.1016/j.matdes.2019.108137
            20.  Qu H, Fu H, Han Z, et al., 2019, Biomaterials for bone tissue   31.  Yánez A, Cuadrado A, Martel O, et al., 2018, Gyroid
               engineering scaffolds: A review. RSC Adv, 9:26252–26262.  porous titanium structures: A versatile solution to be used
                                                                  as scaffolds in bone defect reconstruction.  Mater Design,
               https://doi.org/10.1039/c9ra05214c
                                                                  140:21-29.
            21.  Safari B, Aghanejad A, Kadkhoda J, et al., 2022,   https://doi.org/10.1016/j.matdes.2017.11.050
               Biofunctional phosphorylated magnetic scaffold for bone
               tissue engineering. Colloid Surf B, 211:112284.  32.  Ma S, Tang Q, Han X,  et  al., 2020, Manufacturability,
                                                                  mechanical properties, mass-transport properties and
               https://doi.org/10.1016/j.colsurfb.2021.112284
                                                                  biocompatibility of triply periodic minimal surface (TPMS)
            22.  Asadniaye  Fardjahromi M,  Nazari H,  Ahmadi Tafti SM,   porous scaffolds fabricated by selective laser melting. Mater
               et al., 2022, Metal-organic framework-based nanomaterials   Design, 195:109034.
               for bone tissue engineering and wound healing. Mater Today   https://doi.org/10.1016/j.matdes.2020.109034
               Chem, 23:100670.
                                                               33.  Jadidi A,  Salahinejad E, 2020, Mechanical strength and
               https://doi.org/10.1016/j.mtchem.2021.100670
                                                                  biocompatibility of bredigite (Ca MgSi O ) tissue-
                                                                                                     16
                                                                                                   4
                                                                                               7
            23.  Mi S, Hu X, Lin Z, et al., 2021, Shape memory PLLA-TMC/  engineering  scaffolds  modified  by  aliphatic  polyester
               CSH-dPA microsphere scaffolds with mechanical and   coatings. Ceram Int, 46:16439-16446.
               bioactive enhancement for bone tissue engineering. Colloid   https://doi.org/10.1016/j.ceramint.2020.03.206
               Surf A, 622:126594.
                                                               34.  Ngo TD, Kashani A, Imbalzano G, et al., 2018, Additive
               https://doi.org/10.1016/j.colsurfa.2021.126594     manufacturing (3D  printing):  A review  of materials,
            24.  Xu HH, Wang P, Wang L, et al., 2017, Calcium phosphate   methods, applications and challenges. Compos Part B Eng,
               cements for bone engineering and their biological properties.   143:172–196.
               Bone Res, 5:17056.                                 https://doi.org/10.1016/j.compositesb.2018.02.012
               https://doi.org/10.1038/boneres.2017.56         35.  Lin  YH, Lee AK,  Ho  CC, et al.,  2022, The  effects  of  a
            25.  Ng WL, Chua CK, Shen Y-F, 2019, Print me an organ! Why   3D-printed  magnesium-/strontium-doped  calcium  silicate
               we are not there yet. Prog Polym Sci, 97:101145.   scaffold on regulation  of bone regeneration via  dual-
                                                                  stimulation of the AKT and WNT signaling pathways.
               https://doi.org/10.1016/j.progpolymsci.2019.101145  Mater Sci Eng C Mater Biol Appl, 183:112660.
            26.  Vallet-Regı´  M, Salinas AJ,  Roma´ NJ, et al., 1998, Effect   https://doi.org/10.1016/j.msec.2022.112660
               of magnesium content on the in vitro bioactivity of CaO–
               MgO–SiO –P O sol–gel glasses. J Mater Chem, 9:515–518.  36.  Carluccio  D, Demir  AG,  Bermingham MJ, et al.,  2020,
                       2  2  5                                    Challenges and opportunities in the selective laser melting
            27.  Srinath P, Azeem PA, Reddy KV, 2020, Review on calcium   of biodegradable metals for load-bearing bone scaffold
               silicate-based bioceramics in bone tissue engineering. Int J   applications. Metall Mater Trans A.
               Appl Ceram Tec, 17:2450-2464.
                                                                  https://doi.org/10.1007/s11661-020-05796-z
               https://doi.org/10.1111/IJAC.13577
                                                               37.  Tan C, Li S, Essa K, et al., 2019, Laser powder bed fusion
            28.  Akram N, Mohammad K, Moosa J, et al., 2022, Fabrication   of Ti-rich TiNi lattice structures: Process optimisation,
               of functional and nano-biocomposite scaffolds using   geometrical integrity, and phase transformations. Int J Mach
               strontium-doped bredigite nanoparticles/polycaprolactone/  Tool Manuf, 141:19–29.
               poly lactic acid via 3D printing for bone regeneration. Int J
               Biol Macromol, 219:1319-1336.                      https://doi.org/10.1016/j.ijmachtools.2019.04.002
               https://doi.org/10.1016/j.ijbiomac.2022.08.136  38.  Ning LQ, Chen XB, 2017, A brief review of extrusion-based
                                                                  tissue scaffold bio-printing. Biotechnol J, 12: 1600671.
            29.  Saberi A, Bakhsheshi-Rad HR, Karamian E, et al., 2020, A
               study on the corrosion behavior and biological properties      https:// doi.org/: 10.1002/biot.201600671

            Volume 9 Issue 3 (2023)                        270                         https://doi.org/10.18063/ijb.708
   273   274   275   276   277   278   279   280   281   282   283