Page 428 - IJB-9-3
P. 428

International Journal of Bioprinting                                       3DP PILF cage for osteoporotic


            Funding                                            7.   Tosun Ö, Fidan F, Erdil F, et al., 2012, Assessment of lumbar
                                                                  vertebrae morphology by magnetic resonance imaging in
            This study is supported in part by MOST project 109-2622-  osteoporosis. Skeletal Radiol, 41: 1583–1590.
            B-010 -005 and 110-2221-E-075-004, Taiwan.
                                                                  https://doi.org/10.1007/s00256-012-1435-0
            Conflict of interest                               8.   Le TV, Baaj AA, Dakwar E, et al., 2012, Subsidence of
            The authors declare that they have no conflict of interest.  polyetheretherketone intervertebral cages in minimally
                                                                  invasive lateral retroperitoneal transpsoas lumbar interbody
            Author contributions                                  fusion. Spine (Phila Pa 1976), 37: 1268–1273.
                                                                  https://doi.org/10.1097/brs.0b013e3182458b2f
            Conceptualization: Chi-Yang Liao, Chum-Li Lin
            Investigation: Shao-Fu Huang, Chi-Yang Liao        9.   Taniguchi N, Fujibayashi S, Takemoto M,  et al., 2016,
            Methodology: Shao-Fu Huang, Yi-Ting Chan, Zi-Yi Li    Effect of pore size on bone ingrowth into porous titanium
            Resources: Chun-Ming Chang, Chun-Li Lin               implants fabricated by additive manufacturing: An in vivo
            Writing – original draft: Chun-Li Lin                 experiment. Mater Sci Eng C Mater Biol Appl, 59: 690–701.
            Writing – review & editing: Shao-Fu Huang, Chi-Yang Liao,      https://doi.org/10.1016/j.msec.2015.10.069
               Chun-Li Lin                                     10.  Yang J, Cai H, Lv J,  et al., 2014,  In vivo study of a self-
            Consent for publication                               stabilizing artificial vertebral body fabricated by electron
                                                                  beam melting. Spine (Phila Pa 1976), 39: E486–E492.
            Not applicable.                                       https://doi.org/10.1097/BRS.0000000000000211
            Availability of data                               11.  Wu SH, Li Y, Zhang YQ,  et al., 2013, Porous titanium-6
                                                                  aluminum-4 vanadium cage has better osseointegration and
            Not applicable.                                       less micromotion than a poly-ether-ether-ketone cage in
                                                                  sheep vertebral fusion. Artif Organs, 37: E191–E201.
            References
                                                                  https://doi.org/10.1111/aor.12153
            1.   Zhenjun Z, Fogel GR, Liao Z, et al., 2018, Biomechanical
               analysis of lateral lumbar interbody fusion constructs with   12.  Li F, Li J, Xu G, et al., 2015, Fabrication, pore structure and
               various fixation options: Based on a validated finite element   compressive behavior of anisotropic porous titanium for
               model. World Neurosurg, 114: e1120–e1129.          human trabecular bone implant applications. J Mech Behav
                                                                  Biomed Mater,46: 104–114.
               https://doi.org/10.1016/j.wneu.2018.03.158
                                                                  https://doi.org/10.1016/j.jmbbm.2015.02.023
            2.   Zhong  ZC,  Wei  SH,  Wang  JP,  et al.,  2006,  Finite  element
               analysis of the lumbar spine with a new cage using a topology   13.  Chang B, Song W, Han T, et al., 2016, Influence of pore size
               optimization method. Med Eng Phys, 28:90–98.       of porous titanium fabricated by vacuum diffusion bonding
                                                                  of titanium meshes on cell penetration and bone ingrowth.
               https://doi.org/10.1016/j.medengphy.2005.03.007    Acta Biomater, 33: 311–321.
            3.   Zhang F, Xu HC, Yin B,  et al., 2016, Can an Endplate-     https://doi.org/10.1016/j.actbio.2016.01.022
               conformed cervical cage provide a better biomechanical
               environment than a typical non-conformed cage? A finite   14.  Liao CY, Chien CL, Pu TW, et al., 2022, Assessment of
               element model and cadaver study. Orthop Surg, 8: 367–376.   lumbar vertebrae morphology by computed tomography
                                                                  in older adults with osteoporosis. Current Medical Imaging,
               https://doi.org/10.1111/os.12261                   18: 1195–1203.
            4.   Hakato J, Pezowicz C, Wronski J, et al., 2007, The process of      https://doi.org/10.2174/1573405618666220404160213
               subsidence after cervical stabilizations by cage alone, cage
               with plate and plate-cage. A  biomechanical comparative   15.  Chazal J, Tanguy A, Bourges M, et al., 1985, Biomechanical
               study. Neurol Neurochir Pol, 41: 411–416.          properties of spinal ligaments and a histological study of the
                                                                  supraspinal ligament in traction. J Biomech, 18: 167–176.
            5.   Patel SP, Lee JJ, Hecht GG, et al., 2016, Normative Vertebral
               Hounsfield unit values and correlation with bone mineral      https://doi.org/10.1016/0021-9290(85)90202-7
               density. J Clin Exp Orthop, 2: 14.              16.  Xiao Z, Wang L, Gong H, et al., 2011, A non-linear finite
               https://doi.org/10.4172/2471-8416.100014           element model of human L4-L5 lumbar spinal segment with
                                                                  three dimensional solid element ligaments. Theoretical and
            6.   Griffith JF, Leung PC, Lee R,  et al., 2009, Effect of
               osteoporosis  on  morphology  and  mobility  of  the  lumbar   Applied Mechanics Letters, 1: 064001.
               spine. Spine (Phila Pa 1976), 34: E115–E121.       https://doi.org/10.1063/2.1106401
               https://doi.org/10.1097/brs.0b013e3181895aca    17.  Yamamoto I, Panjabi MM, Crisco T,  et al., 1989, Three-


            Volume 9 Issue 3 (2023)                        420                         https://doi.org/10.18063/ijb.697
   423   424   425   426   427   428   429   430   431   432   433