Page 428 - IJB-9-3
P. 428
International Journal of Bioprinting 3DP PILF cage for osteoporotic
Funding 7. Tosun Ö, Fidan F, Erdil F, et al., 2012, Assessment of lumbar
vertebrae morphology by magnetic resonance imaging in
This study is supported in part by MOST project 109-2622- osteoporosis. Skeletal Radiol, 41: 1583–1590.
B-010 -005 and 110-2221-E-075-004, Taiwan.
https://doi.org/10.1007/s00256-012-1435-0
Conflict of interest 8. Le TV, Baaj AA, Dakwar E, et al., 2012, Subsidence of
The authors declare that they have no conflict of interest. polyetheretherketone intervertebral cages in minimally
invasive lateral retroperitoneal transpsoas lumbar interbody
Author contributions fusion. Spine (Phila Pa 1976), 37: 1268–1273.
https://doi.org/10.1097/brs.0b013e3182458b2f
Conceptualization: Chi-Yang Liao, Chum-Li Lin
Investigation: Shao-Fu Huang, Chi-Yang Liao 9. Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016,
Methodology: Shao-Fu Huang, Yi-Ting Chan, Zi-Yi Li Effect of pore size on bone ingrowth into porous titanium
Resources: Chun-Ming Chang, Chun-Li Lin implants fabricated by additive manufacturing: An in vivo
Writing – original draft: Chun-Li Lin experiment. Mater Sci Eng C Mater Biol Appl, 59: 690–701.
Writing – review & editing: Shao-Fu Huang, Chi-Yang Liao, https://doi.org/10.1016/j.msec.2015.10.069
Chun-Li Lin 10. Yang J, Cai H, Lv J, et al., 2014, In vivo study of a self-
Consent for publication stabilizing artificial vertebral body fabricated by electron
beam melting. Spine (Phila Pa 1976), 39: E486–E492.
Not applicable. https://doi.org/10.1097/BRS.0000000000000211
Availability of data 11. Wu SH, Li Y, Zhang YQ, et al., 2013, Porous titanium-6
aluminum-4 vanadium cage has better osseointegration and
Not applicable. less micromotion than a poly-ether-ether-ketone cage in
sheep vertebral fusion. Artif Organs, 37: E191–E201.
References
https://doi.org/10.1111/aor.12153
1. Zhenjun Z, Fogel GR, Liao Z, et al., 2018, Biomechanical
analysis of lateral lumbar interbody fusion constructs with 12. Li F, Li J, Xu G, et al., 2015, Fabrication, pore structure and
various fixation options: Based on a validated finite element compressive behavior of anisotropic porous titanium for
model. World Neurosurg, 114: e1120–e1129. human trabecular bone implant applications. J Mech Behav
Biomed Mater,46: 104–114.
https://doi.org/10.1016/j.wneu.2018.03.158
https://doi.org/10.1016/j.jmbbm.2015.02.023
2. Zhong ZC, Wei SH, Wang JP, et al., 2006, Finite element
analysis of the lumbar spine with a new cage using a topology 13. Chang B, Song W, Han T, et al., 2016, Influence of pore size
optimization method. Med Eng Phys, 28:90–98. of porous titanium fabricated by vacuum diffusion bonding
of titanium meshes on cell penetration and bone ingrowth.
https://doi.org/10.1016/j.medengphy.2005.03.007 Acta Biomater, 33: 311–321.
3. Zhang F, Xu HC, Yin B, et al., 2016, Can an Endplate- https://doi.org/10.1016/j.actbio.2016.01.022
conformed cervical cage provide a better biomechanical
environment than a typical non-conformed cage? A finite 14. Liao CY, Chien CL, Pu TW, et al., 2022, Assessment of
element model and cadaver study. Orthop Surg, 8: 367–376. lumbar vertebrae morphology by computed tomography
in older adults with osteoporosis. Current Medical Imaging,
https://doi.org/10.1111/os.12261 18: 1195–1203.
4. Hakato J, Pezowicz C, Wronski J, et al., 2007, The process of https://doi.org/10.2174/1573405618666220404160213
subsidence after cervical stabilizations by cage alone, cage
with plate and plate-cage. A biomechanical comparative 15. Chazal J, Tanguy A, Bourges M, et al., 1985, Biomechanical
study. Neurol Neurochir Pol, 41: 411–416. properties of spinal ligaments and a histological study of the
supraspinal ligament in traction. J Biomech, 18: 167–176.
5. Patel SP, Lee JJ, Hecht GG, et al., 2016, Normative Vertebral
Hounsfield unit values and correlation with bone mineral https://doi.org/10.1016/0021-9290(85)90202-7
density. J Clin Exp Orthop, 2: 14. 16. Xiao Z, Wang L, Gong H, et al., 2011, A non-linear finite
https://doi.org/10.4172/2471-8416.100014 element model of human L4-L5 lumbar spinal segment with
three dimensional solid element ligaments. Theoretical and
6. Griffith JF, Leung PC, Lee R, et al., 2009, Effect of
osteoporosis on morphology and mobility of the lumbar Applied Mechanics Letters, 1: 064001.
spine. Spine (Phila Pa 1976), 34: E115–E121. https://doi.org/10.1063/2.1106401
https://doi.org/10.1097/brs.0b013e3181895aca 17. Yamamoto I, Panjabi MM, Crisco T, et al., 1989, Three-
Volume 9 Issue 3 (2023) 420 https://doi.org/10.18063/ijb.697

