Page 58 - IJB-9-3
P. 58
International Journal of Bioprinting Curved cell-guided structures printed by FDM
17. Son J, Bang MS, Park JK, 2019, Hand-maneuverable collagen 28. Du W, Chen J, Li H, et al., 2016, Direct cellular organization
sheet with micropatterns for 3D modular tissue engineering. with ring-shaped composite polymers and glass substrates
ACS Biomater Sci Eng, 5(1):339–345. for urethral sphincter tissue engineering. J Mater Chem B,
http://doi.org/10.1021/acsbiomaterials.8b01066 4(22):3998–4008.
18. Carthew J, Taylor JBJ, Garcia-Cruz MR, et al., 2021, The https://doi.org/10.1039/c6tb00437g
bumpy road to stem cell therapies: Rational design of surface 29. Zhao J, Manuchehrfar F, Liang J, 2020, Cell–substrate
topographies to dictate stem cell mechanotransduction and mechanics guide collective cell migration through
fate. ACS Appl Mater Interfaces, 14(20):23066–23101. intercellular adhesion: A dynamic finite element cellular
https://doi.org/10.1021/acsami.1c22109 model. Biomech Model Mechanobiol, 19(5):1781–1796.
19. Mei Y, He C, Gao C, et al., 2021, 3D-printed degradable https://doi.org/10.1007/s10237-020-01308-5
anti-tumor scaffolds for controllable drug delivery. Int J 30. Albert PJ, Schwarz US, 2014, Dynamics of cell shape and
Bioprinting, 7(4):418. forces on micropatterned substrates predicted by a cellular
https://doi.org/10.18063/ijb.v7i4.418 Potts model. Biophys J, 106(11):2340–2352.
20. Saha SK, Wang D, Nguyen VH, et al., 2019, Scalable https://doi.org/10.1016/j.bpj.2014.04.036
submicrometer additive manufacturing. Science (80-), 31. McEvoy E, Deshpande VS, McGarry P, 2017, Free energy
366(6461):105–109. analysis of cell spreading. J Mech Behav Biomed Mater,
https://doi.org/10.1126/science.aax8760 74:283–295.
21. Zhang Z-Z, Wang S-J, Zhang J-Y, et al., 2017, 3D-printed poly https://doi.org/10.1016/j.jmbbm.2017.06.006
(ε-caprolactone) scaffold augmented with mesenchymal stem 32. Kim M-C, Kim C, Wood L, et al., 2012, Integrating focal
cells for total meniscal substitution: A 12- and 24-week animal adhesion dynamics, cytoskeleton remodeling, and actin motor
study in a rabbit model. Am J Sports Med, 45(7):1497–1511. activity for predicting cell migration on 3D curved surfaces of
https://doi.org/10.1177/0363546517691513 the extracellular matrix. Integr Biol, 4(11):1386–1397.
22. Ji S, Guvendiren M, 2019, 3D printed wavy scaffolds enhance https://doi.org/10.1039/c2ib20159c
mesenchymal stem cell osteogenesis. Micromachines, 11(1):31.
33. Kim M-C, Neal DM, Kamm RD, et al., 2013, Dynamic
https://doi.org/10.3390/mi11010031 modeling of cell migration and spreading behaviors on
23. Hou Y, Xie W, Yu L, et al., 2020, Surface roughness gradients fibronectin coated planar substrates and micropatterned
reveal topography‐specific mechanosensitive responses in geometries. PLoS Comput Biol, 9(2):e1002926.
human mesenchymal stem cells. Small, 16(10):1905422. https://doi.org/10.1371/journal.pcbi.1002926
https://doi.org/10.1002/smll.201905422 34. Bangasser BL, Shamsan GA, Chan CE, et al., 2017, Shifting
24. Nguyen AT, Sathe SR, Yim EKF, 2016, From nano to the optimal stiffness for cell migration. Nat Commun,
micro: Topographical scale and its impact on cell adhesion, 8(1):1–10.
morphology and contact guidance. J Phys Condens Matter, https://doi.org/10.1038/ncomms15313
28(18):183001.
35. Chang C, Dai Z, Shih P, 2022, Modeling and simulation of
https://doi.org/10.1088/0953-8984/28/18/183001 cell migration on the basis of force equilibrium. Int J Numer
25. Buyuksungur S, Tanir TE, Buyuksungur A, et al., 2017, Method Biomed Eng, 38(2):e3550.
3D printed poly (ε-caprolactone) scaffolds modified with https://doi.org/10.1002/cnm.3550
hydroxyapatite and poly (propylene fumarate) and their
effects on the healing of rabbit femur defects. Biomater Sci, 36. Zhang J, Gao Z, Zhang Y, et al., 2020, Study on chitosan-
5(10):2144–2158. based nanocomposite hydrogel in soft tissue defect of hand.
Nanosci Nanotechnol Lett, 12(9):1120–1126.
https://doi.org/10.1039/c7bm00514h
https://doi.org/10.1166/nnl.2020.3217
26. Hedayati SK, Behravesh AH, Hasannia S, et al., 2020,
3D printed PCL scaffold reinforced with continuous 37. Ge L, Yang L, Bron R, et al., 2020, Topography-mediated
biodegradable fiber yarn: A study on mechanical and cell fibroblast cell migration is influenced by direction, wavelength,
viability properties. Polym Test, 83106347. and amplitude. ACS Appl Bio Mater, 3(4):2104–2116.
https://doi.org/10.1016/j.polymertesting.2020.106347 https://doi.org/10.1021/acsabm.0c00001
27. Buttenschön A, Edelstein-Keshet L, 2020, Bridging from 38. Vedula SRK, Leong MC, Lai TL, et al., 2012, Emerging
single to collective cell migration: A review of models and modes of collective cell migration induced by geometrical
links to experiments. PLoS Comput Biol, 16(12):e1008411. constraints. Proc Natl Acad Sci, 109(32):12974–12979.
https://doi.org/10.1371/journal.pcbi.1008411 https://doi.org/10.1073/pnas.1119313109
Volume 9 Issue 3 (2023) 50 https://doi.org/10.18063/ijb.681

