Page 374 - IJB-9-4
P. 374

International Journal of Bioprinting   A computational model of cell viability and proliferation of 3D-bioprinted constructs



            20.  Higuera G, Schop D, Janssen F, et al., Quantifying in vitro   30.  CELLINK Series. [Online]. www.cellink.com
               growth and metabolism kinetics of human mesenchymal
               stem cells using a mathematical model. [Online]. www.  31.  Dai LG, Dai NT, Chen TY,  et al., 2022, A bioprinted
               liebertpub.com                                     vascularized skin substitute with fibroblasts, keratinocytes,
                                                                  and endothelial progenitor cells for skin wound healing.
            21.  Xu P, 2020, Analytical solution for a hybrid Logistic-Monod   Bioprinting, 28: e00237
               cell growth model in batch and continuous stirred tank
               reactor culture. Biotechnol Bioeng, 117(3): 873–878.  https://doi.org/10.1016/j.bprint.2022.e00237
               https://doi.org/10.1002/bit.27230               32.  Krishnamoorthy S, Zhang Z, Xu C, 2019, Biofabrication
                                                                  of three-dimensional cellular structures based on gelatin
            22.  Quarteroni A, 2017, Numerical Models for Differential   methacrylate–alginate interpenetrating network hydrogel.
               Problems, MS&A-Modeling, Simulation and Applications   J Biomater Appl, 33(8): 1105–1117.
               16. [Online]. Accessed: December 06, 2022. https://link.
               springer.com/book/10.1007/978-3-319-49316-9        https://doi.org/10.1177/0885328218823329
                                                               33.  Yao B, Hu T, Cui X, et al., 2019, Enzymatically degradable
            23.  Petter Langtangen H, Logg A, 2017, Solving PDEs in   alginate/gelatin bioink promotes cellular behavior and
               Python—The FEniCS tutorial volume I.
                                                                  degradation in vitro and in vivo.  Biofabrication, 11(4):
            24.  Wagner BA, Venkataraman S, Buettner GR, 2011, The rate   045020.
               of oxygen utilization by cells.  Free Radic Biol Med, 51(3):   https://doi.org/10.1088/1758-5090/ab38ef
               700–712.
                                                               34.  Sarker B, Singh R, Zehnder T, et al., 2017, Macromolecular
               https://doi.org/10.1016/j.freeradbiomed.2011.05.024  interactions in alginate-gelatin hydrogels regulate the

            25.  ThermoFisher Scientific. DMEM - Dulbecco’s Modified Eagle   behavior of human fibroblasts.  J Bioact Compat Polym,
               Medium. Available on-line. https://www.thermofisher.com/  32(3): 309–324.
               order/catalog/product/11965092?SID=srch-srp-11965092.  https://doi.org/10.1177/0883911516668667
            26.  Gupta SC, Gupta N, Ahlawat SPS,  et al., 2005, In vitro   35.  Zhang Y, Kumar P, LvS, et al., 2021, Recent advances in 3D
               culture of skin fibroblast cells for potential cloning by   bioprinting of vascularized tissues. Mater Des, 199: 109398.
               nuclear transfer, in Applications of Gene-Based Technologies   https://doi.org/10.1016/j.matdes.2020.109398
               for Improving Animal Production and Health in Developing
               Countries, Berlin/Heidelberg, Springer-Verlag, 631–640.  36.  Novosel EC, Kleinhans C, Kluger PJ, 2011, Vascularization
                                                                  is the key challenge in tissue engineering. Adv Drug Deliv
               https://doi.org/10.1007/1-4020-3312-5_47           Rev, 63(4): 300–311.
            27.  Niu H, Li C, Guan Y, et al., 2020, High oxygen preservation   https://doi.org/10.1016/j.addr.2011.03.004
               hydrogels to augment cell survival under hypoxic condition.
               Acta Biomater, 105: 56–67.                      37.  Li X, Liu L, Zhang X, et al., 2018, Research and development
                                                                  of 3D printed vasculature constructs. Biofabrication, 10(3).
               https://doi.org/10.1016/j.actbio.2020.01.017
                                                                  https://doi.org/10.1088/1758-5090/aabd56
            28.  Gruetter R, Ugurbil K, Seaquist ER, 1998, Steady-state
               cerebral glucose concentrations and transport in the human   38.  Zhu J, Wang Y, Zhong L,  et  al., 2021, Advances in tissue
               brain. J Neurochem, 70(1): 397–408.                engineering  of vasculature  through three-dimensional
                                                                  bioprinting. Dev Dynamics, 250(12): 1717–1738.
               https://doi.org/10.1046/j.1471-4159.1998.70010397.x
                                                                  https://doi.org/10.1002/dvdy.385
            29.  Buchwald P, 2009, FEM-based oxygen consumption and cell
               viability models for avascular pancreatic islets.  Theor Biol
               Med Model, 6(1): 5.
               https://doi.org/10.1186/1742-4682-6-5
















            Volume 9 Issue 4 (2023)                        366                         https://doi.org/10.18063/ijb.741
   369   370   371   372   373   374   375   376   377   378   379