Page 374 - IJB-9-4
P. 374
International Journal of Bioprinting A computational model of cell viability and proliferation of 3D-bioprinted constructs
20. Higuera G, Schop D, Janssen F, et al., Quantifying in vitro 30. CELLINK Series. [Online]. www.cellink.com
growth and metabolism kinetics of human mesenchymal
stem cells using a mathematical model. [Online]. www. 31. Dai LG, Dai NT, Chen TY, et al., 2022, A bioprinted
liebertpub.com vascularized skin substitute with fibroblasts, keratinocytes,
and endothelial progenitor cells for skin wound healing.
21. Xu P, 2020, Analytical solution for a hybrid Logistic-Monod Bioprinting, 28: e00237
cell growth model in batch and continuous stirred tank
reactor culture. Biotechnol Bioeng, 117(3): 873–878. https://doi.org/10.1016/j.bprint.2022.e00237
https://doi.org/10.1002/bit.27230 32. Krishnamoorthy S, Zhang Z, Xu C, 2019, Biofabrication
of three-dimensional cellular structures based on gelatin
22. Quarteroni A, 2017, Numerical Models for Differential methacrylate–alginate interpenetrating network hydrogel.
Problems, MS&A-Modeling, Simulation and Applications J Biomater Appl, 33(8): 1105–1117.
16. [Online]. Accessed: December 06, 2022. https://link.
springer.com/book/10.1007/978-3-319-49316-9 https://doi.org/10.1177/0885328218823329
33. Yao B, Hu T, Cui X, et al., 2019, Enzymatically degradable
23. Petter Langtangen H, Logg A, 2017, Solving PDEs in alginate/gelatin bioink promotes cellular behavior and
Python—The FEniCS tutorial volume I.
degradation in vitro and in vivo. Biofabrication, 11(4):
24. Wagner BA, Venkataraman S, Buettner GR, 2011, The rate 045020.
of oxygen utilization by cells. Free Radic Biol Med, 51(3): https://doi.org/10.1088/1758-5090/ab38ef
700–712.
34. Sarker B, Singh R, Zehnder T, et al., 2017, Macromolecular
https://doi.org/10.1016/j.freeradbiomed.2011.05.024 interactions in alginate-gelatin hydrogels regulate the
25. ThermoFisher Scientific. DMEM - Dulbecco’s Modified Eagle behavior of human fibroblasts. J Bioact Compat Polym,
Medium. Available on-line. https://www.thermofisher.com/ 32(3): 309–324.
order/catalog/product/11965092?SID=srch-srp-11965092. https://doi.org/10.1177/0883911516668667
26. Gupta SC, Gupta N, Ahlawat SPS, et al., 2005, In vitro 35. Zhang Y, Kumar P, LvS, et al., 2021, Recent advances in 3D
culture of skin fibroblast cells for potential cloning by bioprinting of vascularized tissues. Mater Des, 199: 109398.
nuclear transfer, in Applications of Gene-Based Technologies https://doi.org/10.1016/j.matdes.2020.109398
for Improving Animal Production and Health in Developing
Countries, Berlin/Heidelberg, Springer-Verlag, 631–640. 36. Novosel EC, Kleinhans C, Kluger PJ, 2011, Vascularization
is the key challenge in tissue engineering. Adv Drug Deliv
https://doi.org/10.1007/1-4020-3312-5_47 Rev, 63(4): 300–311.
27. Niu H, Li C, Guan Y, et al., 2020, High oxygen preservation https://doi.org/10.1016/j.addr.2011.03.004
hydrogels to augment cell survival under hypoxic condition.
Acta Biomater, 105: 56–67. 37. Li X, Liu L, Zhang X, et al., 2018, Research and development
of 3D printed vasculature constructs. Biofabrication, 10(3).
https://doi.org/10.1016/j.actbio.2020.01.017
https://doi.org/10.1088/1758-5090/aabd56
28. Gruetter R, Ugurbil K, Seaquist ER, 1998, Steady-state
cerebral glucose concentrations and transport in the human 38. Zhu J, Wang Y, Zhong L, et al., 2021, Advances in tissue
brain. J Neurochem, 70(1): 397–408. engineering of vasculature through three-dimensional
bioprinting. Dev Dynamics, 250(12): 1717–1738.
https://doi.org/10.1046/j.1471-4159.1998.70010397.x
https://doi.org/10.1002/dvdy.385
29. Buchwald P, 2009, FEM-based oxygen consumption and cell
viability models for avascular pancreatic islets. Theor Biol
Med Model, 6(1): 5.
https://doi.org/10.1186/1742-4682-6-5
Volume 9 Issue 4 (2023) 366 https://doi.org/10.18063/ijb.741

