Page 373 - IJB-9-4
P. 373

International Journal of Bioprinting   A computational model of cell viability and proliferation of 3D-bioprinted constructs



            Consent for publication                               Progress and challenges in clinical practice. Int J Environ Res
                                                                  Public Health, 18(20): 10806.
            Not applicable.
                                                                  https://doi.org/10.3390/ijerph182010806
            Availability of data                               10.  Zhu W, Qu X, Zhu J, et al. 2016, Analytic models of oxygen and
                                                                  nutrient diffusion, metabolism dynamics, and architecture
            Not applicable.                                       optimization in  three-dimensional  tissue  constructs
                                                                  with applications and insights in cerebral organoids.
            Further disclosure                                    Tissue Eng Part C Methods, 22(3): 221–249.
            Part of this work was delivered as an oral presentation at   https://doi.org/10.1089/ten.TEC.2015.0375
            the fifth International Conference on Biomaterials and
            Nanomaterials, March 10, 2022, Microsoft Teams.    11.  Zhu W, Qu X, Zhu J,  et al., 2017, Direct 3D bioprinting
                                                                  of  prevascularized  tissue  constructs  with  complex
                                                                  microarchitecture. Biomaterials, 124: 106–115.
            References
                                                                  https://doi.org/10.1016/j.biomaterials.2017.01.042
            1.   Ng WL, Chua CK., Shen YF, 2019, Print me an organ!   12.  Ehsan SM, George SC, 2013, Nonsteady state oxygen
               Why we are not there yet. Progr Polym Sci, 97: 101–145.  transport in engineered tissue: Implications for design.
               https://doi.org/10.1016/j.progpolymsci.2019.101145  Tissue Eng Part A, 19(11–12): 1433–1442.
            2.   Dey M, Ozbolat IT, 2020, 3D bioprinting of cells, tissues and   https://doi.org/10.1089/ten.tea.2012.0587
               organs. Sci Rep, 10(1): 14023.
                                                               13.  Magliaro  C, Mattei  G, Iacoangeli  F,  et al., 2019,  Oxygen
               https://doi.org/10.1038/s41598-020-70086-y         consumption characteristics in 3D constructs depend on
            3.   Santoni S, Gugliandolo SG, Sponchioni M,  et al., 2022,   cell density. Front Bioeng Biotechnol, 7: 251.
               3D bioprinting: Current status and trends—A guide to   https://doi.org/10.3389/fbioe.2019.00251
               the  literature and  industrial  practice.  Bio-Des Manuf,  5(1):
               14–42.                                          14.  Jin H, Lei J, 2014, A mathematical model of cell population
                                                                  dynamics with autophagy response to starvation.  Math
               https://doi.org/10.1007/s42242-021-00165-0         Biosci, 258: 1–10.
            4.   Alexander AE, Wake N, Chepelev L, et al., 2021, A guideline   https://doi.org/10.1016/j.mbs.2014.08.014
               for 3D printing terminology in biomedical research utilizing
               ISO/ASTM standards. 3D Print Med, 7(1): 8.      15.  Vogels M,  Zoeckler  R, Stasiw DM,  et al., 1975, P.F.
                                                                  Verhulst’s ‘Notice sur la loi que la populations suit dans
               https://doi.org/10.1186/s41205-021-00098-5
                                                                  son accroissement’ from Correspondence Mathematique.
            5.   Moroni L, Boland T, Burdock JA, et al., 2018, Biofabrication:   Ghent, X:1838. J Biol Phys 3: 183–192.
               A guide to technology and terminology. Trends Biotechnol,
               36(4): 384–402.                                    https://doi.org/10.1007/BF02309004
               https://doi.org/10.1016/j.tibtech.2017.10.015   16.  Ward JP, King JR, 1997, Mathematical modelling of
                                                                  avascular-tumour growth. [Online].
            6.   Ozbolat IT, Hospodiuk M, 2016, Current advances and
               future  perspectives  in extrusion-based bioprinting.   https://academic.oup.com/imammb/article/14/1/39/660000
               Biomaterials, 76: 321–343.                      17.  Kiran KL, Jayachandran D, Lakshminarayanan S, 2009,
               https://doi.org/10.1016/j.biomaterials.2015.10.076  Mathematical modelling of avascular tumour growth based
                                                                  on diffusion of nutrients and its validation. Can J Chem Eng,
            7.   Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling   87(5): 732–740.
               droplet impact velocity and droplet volume: Key factors to
               achieving high cell viability in sub-nanoliter droplet-based   https://doi.org/10.1002/cjce.20204
               bioprinting. Int J Bioprint, 8(1): 1–17.
                                                               18.  Tindall MJ, Please CP, Peddie MJ, 2008, Modelling the
               https://doi.org/10.18063/IJB.V8I1.424              formation of necrotic regions in avascular tumours. Math
            8.   Long WL, Lee JM, Zhou M et al., 2020, Vat polymerization-  Biosci, 211(1): 34–55.
               based bioprinting—Process, materials, applications and   https://doi.org/10.1016/j.mbs.2007.09.002
               regulatory challenges. Biofabrication, 12(2): 022001.
                                                               19.  Fritz M, Lima EABF, Nikolić V, et al., 2019, Local and nonlocal
               https://doi.org/10.1088/1758-5090/ab6034           phase-field models of tumor growth and invasion due to ECM
            9.   Piazza DE, Pandolfi E, Cacciotti I, et al., 2021, Bioprinting   degradation. Math Models Methods Appl Sci, 29(13): 2433–2468.
               technology in skin, heart, pancreas and cartilage tissues:   https://doi.org/10.1142/S0218202519500519


            Volume 9 Issue 4 (2023)                        365                         https://doi.org/10.18063/ijb.741
   368   369   370   371   372   373   374   375   376   377   378