Page 39 - IJB-9-5
P. 39
International Journal of Bioprinting 3D bioprinted vascularized tissue models
12. Yang Q, Lian Q, Xu F, 2017, Perspective: Fabrication of 23. Li J, Wu C, Chu PK, et al., 2020, 3D printing of hydrogels:
integrated organ-on-a-chip via bioprinting. Biomicrofluidics, Rational design strategies and emerging biomedical
11(3): 031301. applications. Mater Sci Eng R Rep, 140: 100543.
https://doi.org/10.1063/1.4982945 https://doi.org/10.1016/j.mser.2020.100543
13. Zhang Q, Bosch-Rué È, Pérez RA, et al., 2021, Biofabrication of 24. Chae S, Cho D-W, 2023, Biomaterial-based 3D bioprinting
tissue engineering vascular systems. APL Bioeng, 5(2): 021507. strategy for orthopedic tissue engineering. Acta Biomater,
https://doi.org/10.1063/5.0039628 156: 4–20.
14. Hedegaard CL, Mata A, 2020, Integrating self-assembly https://doi.org/10.1016/j.actbio.2022.08.004
and biofabrication for the development of structures 25. Daly AC, Prendergast ME, Hughes AJ, et al., 2021,
with enhanced complexity and hierarchical control. Bioprinting for the biologist. Cell, 184(1): 18–32.
Biofabrication, 12(3): 032002.
https://doi.org/10.1016/j.cell.2020.12.002
https://dx.doi.org/10.1088/1758-5090/ab84cb
26. Jang J, Park H-J, Kim S-W, et al., 2017, 3D printed complex
15. Wu Y, Fortunato GM, Okesola BO, et al., 2021, An interfacial
self-assembling bioink for the manufacturing of capillary- tissue construct using stem cell-laden decellularized
like structures with tuneable and anisotropic permeability. extracellular matrix bioinks for cardiac repair. Biomaterials,
Biofabrication, 13(3): 035027. 112: 264–274.
https://dx.doi.org/10.1088/1758-5090/abe4c3 https://doi.org/10.1016/j.biomaterials.2016.10.026
16. Wu Y, Okesola BO, Xu J, et al., 2020, Disordered protein- 27. Maiullari F, Costantini M, Milan M, et al., 2018, A multi-
graphene oxide co-assembly and supramolecular biofabrication cellular 3D bioprinting approach for vascularized heart
of functional fluidic devices. Nat Commun, 11(1): 1182. tissue engineering based on HUVECs and iPSC-derived
cardiomyocytes. Sci Rep, 8(1): 13532.
https://doi.org/10.1038/s41467-020-14716-z
https://doi.org/10.1038/s41598-018-31848-x
17. Ha D-H, Chae S, Lee JY, et al., 2021, Therapeutic effect
of decellularized extracellular matrix-based hydrogel for 28. Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016,
radiation esophagitis by 3D printed esophageal stent. Bioprinting of 3D convoluted renal proximal tubules on
Biomaterials, 266: 120477. perfusable chips. Sci Rep, 6(1): 34845.
https://doi.org/10.1016/j.biomaterials.2020.120477 https://doi.org/10.1038/srep34845
18. Chae S, Yong U, Park W, et al., 2023, 3D cell-printing of 29. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D
gradient multi-tissue interfaces for rotator cuff regeneration. bioprinting of vascularized, heterogeneous cell-laden tissue
Bioact Mater, 19: 611–625. constructs. Adv Mater, 26(19): 3124–3130.
https://doi.org/10.1016/j.bioactmat.2022.05.004s https://doi.org/10.1002/adma.201305506
19. Bliley JM, Shiwarski DJ, Feinberg AW, 2022, 3D-bioprinted 30. Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
human tissue and the path toward clinical translation. Sci of patterned vascular networks for perfusable engineered
Transl Med, 14(666): eabo7047. three-dimensional tissues. Nat Mater, 11(9): 768–774.
https://doi.org/10.1126/scitranslmed.abo7047 https://doi.org/10.1038/nmat3357
20. Zhang Y, Kumar P, Lv S, et al., 2021, Recent advances in 31. Skylar-Scott MA, Uzel SGM, Nam LL, et al., 2019,
3D bioprinting of vascularized tissues. Mater Design, 199: Biomanufacturing of organ-specific tissues with high
109398. cellular density and embedded vascular channels. Sci Adv,
5(9): eaaw2459.
https://doi.org/10.1016/j.matdes.2020.109398
https://doi.org/10.1126/sciadv.aaw2459
21. Song HHG, Rumma RT, Ozaki CK, et al., 2018, Vascular
tissue engineering: progress, challenges, and clinical 32. Ouyang L, Armstrong JPK, Chen Q, et al., 2020, Void-free
promise. Cell Stem Cell, 22(3): 340–354. 3D bioprinting for in situ endothelialization and microfluidic
perfusion. Adv Funct Mater, 30(1): 1908349.
https://doi.org/10.1016/j.stem.2018.02.009
https://doi.org/10.1002/adfm.201908349
22. Chae S, Cho D-W, 2022, Three-dimensional bioprinting 33. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
with decellularized extracellular matrix-based bioinks in of collagen to rebuild components of the human heart.
translational regenerative medicine. MRS Bull, 47(1): 70–79.
Science, 365(6452): 482–487.
https://doi.org/10.1557/s43577-021-00260-8 https://doi.org/10.1126/science.aav9051
Volume 9 Issue 5 (2023) 31 https://doi.org/10.18063/ijb.748

