Page 39 - IJB-9-5
P. 39

International Journal of Bioprinting                                3D bioprinted vascularized tissue models



            12.  Yang Q, Lian Q, Xu F, 2017, Perspective: Fabrication of   23.  Li J, Wu C, Chu PK, et al., 2020, 3D printing of hydrogels:
               integrated organ-on-a-chip via bioprinting. Biomicrofluidics,   Rational  design  strategies  and  emerging  biomedical
               11(3): 031301.                                     applications. Mater Sci Eng R Rep, 140: 100543.
               https://doi.org/10.1063/1.4982945                  https://doi.org/10.1016/j.mser.2020.100543
            13.  Zhang Q, Bosch-Rué È, Pérez RA, et al., 2021, Biofabrication of   24.  Chae S, Cho D-W, 2023, Biomaterial-based 3D bioprinting
               tissue engineering vascular systems. APL Bioeng, 5(2): 021507.  strategy for orthopedic tissue engineering. Acta Biomater,
               https://doi.org/10.1063/5.0039628                  156: 4–20.
            14.  Hedegaard CL, Mata A, 2020, Integrating self-assembly   https://doi.org/10.1016/j.actbio.2022.08.004
               and  biofabrication for  the  development  of  structures   25.  Daly AC, Prendergast ME, Hughes AJ, et al., 2021,
               with enhanced complexity and hierarchical control.   Bioprinting for the biologist. Cell, 184(1): 18–32.
               Biofabrication, 12(3): 032002.
                                                                  https://doi.org/10.1016/j.cell.2020.12.002
               https://dx.doi.org/10.1088/1758-5090/ab84cb
                                                               26.  Jang J, Park H-J, Kim S-W, et al., 2017, 3D printed complex
            15.  Wu Y, Fortunato GM, Okesola BO, et al., 2021, An interfacial
               self-assembling bioink for the manufacturing of capillary-  tissue construct using stem cell-laden decellularized
               like structures with tuneable and anisotropic permeability.   extracellular matrix bioinks for cardiac repair. Biomaterials,
               Biofabrication, 13(3): 035027.                     112: 264–274.
               https://dx.doi.org/10.1088/1758-5090/abe4c3        https://doi.org/10.1016/j.biomaterials.2016.10.026
            16.  Wu  Y, Okesola BO,  Xu  J,  et  al.,  2020, Disordered  protein-  27.  Maiullari F, Costantini M, Milan M, et al., 2018, A multi-
               graphene oxide co-assembly and supramolecular biofabrication   cellular 3D bioprinting approach for vascularized heart
               of functional fluidic devices. Nat Commun, 11(1): 1182.  tissue engineering based on HUVECs and iPSC-derived
                                                                  cardiomyocytes. Sci Rep, 8(1): 13532.
               https://doi.org/10.1038/s41467-020-14716-z
                                                                  https://doi.org/10.1038/s41598-018-31848-x
            17.  Ha D-H, Chae S, Lee JY, et al., 2021, Therapeutic effect
               of  decellularized  extracellular  matrix-based  hydrogel  for   28.  Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016,
               radiation esophagitis by 3D printed esophageal stent.   Bioprinting of 3D convoluted renal proximal tubules on
               Biomaterials, 266: 120477.                         perfusable chips. Sci Rep, 6(1): 34845.
               https://doi.org/10.1016/j.biomaterials.2020.120477  https://doi.org/10.1038/srep34845
            18.  Chae S, Yong U, Park W, et al., 2023, 3D cell-printing of   29.  Kolesky  DB,  Truby  RL,  Gladman  AS, et al.,  2014,  3D
               gradient multi-tissue interfaces for rotator cuff regeneration.   bioprinting of vascularized, heterogeneous cell-laden tissue
               Bioact Mater, 19: 611–625.                         constructs. Adv Mater, 26(19): 3124–3130.
               https://doi.org/10.1016/j.bioactmat.2022.05.004s   https://doi.org/10.1002/adma.201305506
            19.  Bliley JM, Shiwarski DJ, Feinberg AW, 2022, 3D-bioprinted   30.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
               human tissue and the path toward clinical translation. Sci   of patterned vascular networks for perfusable engineered
               Transl Med, 14(666): eabo7047.                     three-dimensional tissues. Nat Mater, 11(9): 768–774.
               https://doi.org/10.1126/scitranslmed.abo7047       https://doi.org/10.1038/nmat3357
            20.  Zhang Y, Kumar P, Lv S,  et  al., 2021, Recent advances in   31.  Skylar-Scott  MA,  Uzel SGM,  Nam  LL, et al.,  2019,
               3D bioprinting of vascularized tissues. Mater Design, 199:   Biomanufacturing of organ-specific tissues with high
               109398.                                            cellular density and embedded vascular channels. Sci Adv,
                                                                  5(9): eaaw2459.
               https://doi.org/10.1016/j.matdes.2020.109398
                                                                  https://doi.org/10.1126/sciadv.aaw2459
            21.  Song HHG, Rumma RT, Ozaki CK, et al., 2018, Vascular
               tissue engineering: progress, challenges, and clinical   32.  Ouyang L, Armstrong JPK, Chen Q, et al., 2020, Void-free
               promise. Cell Stem Cell, 22(3): 340–354.           3D bioprinting for in situ endothelialization and microfluidic
                                                                  perfusion. Adv Funct Mater, 30(1): 1908349.
               https://doi.org/10.1016/j.stem.2018.02.009
                                                                  https://doi.org/10.1002/adfm.201908349
            22.  Chae S, Cho D-W, 2022, Three-dimensional bioprinting   33.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
               with decellularized extracellular matrix-based bioinks in   of collagen to rebuild components of the human heart.
               translational regenerative medicine. MRS Bull, 47(1): 70–79.
                                                                  Science, 365(6452): 482–487.
               https://doi.org/10.1557/s43577-021-00260-8         https://doi.org/10.1126/science.aav9051



            Volume 9 Issue 5 (2023)                         31                         https://doi.org/10.18063/ijb.748
   34   35   36   37   38   39   40   41   42   43   44