Page 500 - IJB-9-5
P. 500

International Journal of Bioprinting                CECM-GelMA bioinks of DLP 3D printing for corneal engineering



            32.  Fernandez-Perez J, Ahearne M, 2019, Influence of biochemical   47.  Formisano N, van der Putten C, Grant R, et al., 2021,
               cues in human corneal stromal cell phenotype. Curr Eye Res,   Mechanical properties of bioengineered corneal stroma.
               44(2): 135–146. 10.1080/02713683.2018.1536216      Adv Healthc Mater, 10(20): 2100972.
            33.  Harley BA, Leung JH, Silva EC, et al., 2007, Mechanical   48.  Xu CC, Chan RW, Weinberger DG, et al., 2010, A bovine
               characterization of collagen–glycosaminoglycan scaffolds.   acellular  scaffold  for vocal  fold  reconstruction  in a  rat
               Acta Biomater, 3(4): 463–474.                      model. J Biomed Mater Res Part A, 92(1): 18–32.
            34.  Gan Y, 2012, Continuum mechanics: Progress in fundamentals   49.  Parekh  A,  Mantle  B,  Banks  J, et al.,  2009,  Repair  of
               and engineering applications, 10.5772/2103(Chapter 4).  the tympanic membrane with urinary bladder matrix.
            35.  Daxer A, Misof K, Grabner B, et al., 1998, Collagen fibrils   Laryngoscope, 119(6): 1206–1213.
               in the human corneal stroma: Structure and aging. Investig   50.  Valentin JE, Turner NJ, Gilbert TW, et al., 2010, Functional
               Ophthalmol Vis Sci, 39(3): 644–647.                skeletal muscle formation with a biologic scaffold.
            36.  Boettner EA, Wolter JR, 1962, Transmission of the ocular   Biomaterials, 31(29): 7475–7484.
               media. Investig Ophthalmol Vis Sci, 1: 776–783.  51.  Bron A, 2001, The architecture of the corneal stroma. BMJ
            37.  Peris-Martínez C, García-Domene MC, Penadés M, et al.,   Publishing Group Ltd, London, 379–381.
               2021, Spectral transmission of the human corneal layers.    52.  Harrington DJ, 1996, Bacterial collagenases and collagen-
               J Clin Med, 10(19): 4490.                          degrading enzymes and their  potential role in human
            38.  Kong B, Chen Y, Liu R, et al., 2020, Fiber reinforced GelMA   disease. Infect Immun, 64(6): 1885–1891.
               hydrogel to induce the regeneration of corneal stroma. Nat   53.  Aldave AJ, Kamal KM, Vo RC, et al., 2009, The Boston
               Commun, 11(1): 1–12.
                                                                  type I keratoprosthesis: Improving outcomes and expanding
            39.  Nguyen AK, Goering PL, Reipa V, et al., 2019, Toxicity   indications. Ophthalmology, 116(4): 640–651.
               and photosensitizing assessment of gelatin methacryloyl-
               based hydrogels  photoinitiated  with  lithium  phenyl-2,  4,   54.  Ulag S, Uysal E, Bedir T, et al., 2021, Recent developments
               6-trimethylbenzoylphosphinate in human primary renal   and characterization techniques in 3D printing of corneal
               proximal tubule epithelial cells.  Biointerphases, 14(2):   stroma tissue. Polym Adv Technol, 32(8): 3287–3296.
               021007.                                         55.  Ahearne M, Fernández-Pérez J, 2020, Fabrication of Corneal
            40.  Sun Y, Yu K, Nie J, et al., 2021, Modeling the printability of   Extracellular Matrix-Derived Hydrogels. Methods Mol Biol
               photocuring and strength adjustable hydrogel bioink during   2145: 159-168.10.1007/978-1-0716-0599-8_11.
               projection-based  3D  bioprinting.  Biofabrication,  13(3):   56.  Chakravarti S, Petroll WM, Hassell JR, et al., 2000, Corneal
               035032.                                            opacity  in  lumican-null  mice:  defects  in  collagen  fibril
            41.  Duarte Campos DF, Rohde M, Ross M, et al., 2019, Corneal   structure  and  packing  in  the  posterior  stroma.  Invest
               bioprinting utilizing collagen‐based bioinks and primary   Ophthalmol Vis Sci, 41(11): 3365–3373.
               human keratocytes.  J Biomed Mater Res Part A, 107(9):    57.  Yamamoto M, Quantock AJ, Young RD, et al., 2012, A
               1945–1953.                                         selective inhibitor of the Rho kinase pathway, Y-27632, and
            42.  Kim BS, Das S, Jang J, et al., 2020, Decellularized   its influence on wound healing in the corneal stroma. Mol
               extracellular matrix-based bioinks for engineering tissue-  Vis, 18: 1727–1739.
               and organ-specific microenvironments. Chem Rev, 120(19):   58.  Jester JV, Barry-Lane PA, Cavanagh HD, et al., 1996,
               10608–10661.                                       Induction of α-smooth muscle actin expression and
            43.  Ranjan R, Rawat K, Bohidar H, 2016, Interface versus bulk   myofibroblast  transformation  in  cultured  corneal
               gelation and UCST in hydrophobically assembled TX-100   keratocytes. Cornea, 15(5): 505–516.
               molecular gels. Colloids Surf, 499: 113–122.    59.  Wang F, Shi W, Li H, et al., 2020, Decellularized porcine
            44.  Hatami-Marbini H, Etebu E, 2013, Hydration dependent   cornea-derived hydrogels for the regeneration of
               biomechanical properties of the corneal stroma.  Exp Eye   epithelium and stroma in focal corneal defects. Ocul Surf,
               Res, 116: 47–54.                                   18(4): 748–760.
            45.  Sharifi S, Sharifi H, Guild C, et al., 2021, Toward   60.  Scott S-G, Jun AS, Chakravarti S, 2011, Sphere formation
               electron-beam  sterilization  of  a  pre-assembled  Boston   from corneal keratocytes and phenotype specific markers.
               keratoprosthesis. Ocul Surf, 20: 176–184.          Exp Eye Res, 93(6): 898–905.
            46.  Petsche SJ, Chernyak D, Martiz J, et al., 2012, Depth-
               dependent transverse shear properties of the human corneal
               stroma. Investig Ophthalmol Vis Sci, 53(2): 873–880.





            Volume 9 Issue 5 (2023)                        492                         https://doi.org/10.18063/ijb.774
   495   496   497   498   499   500   501   502   503   504   505