Page 230 - v11i4
P. 230
International Journal of Bioprinting Vector-based G-code generation for biofabrication
Acknowledgments References
The authors would also like to thank Dr. Philipp Stahlhut 1. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising
for SEM imaging. They acknowledge Christi_ko for fixing the definition of an evolving field. Biofabrication.
bugs relevant for this project and of course dwrobel, 2016;8(1):13001.
jp1357, neveruml, rli, treki, andyz, innerbushman, doi: 10.1088/1758-5090/8/1/013001
poofjunior, propcoder, sanzamoyski, and seb_kuzminsky 2. Eichholz KF, Gonçalves I, Barceló X, Federici AS, Hoey
for developing dxf2gcode. DA, Kelly DJ. How to design, develop and build a fully-
integrated melt electrowriting 3D printer. Addit Manuf.
Funding 2022;58:102998.
This work was supported by the German Research doi: 10.1016/j.addma.2022.102998
Foundation (DFG, Deutsche Forschungsgemeinschaft) 3. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S,
under project number 326998133, as part of the O’Donoghue L, Charitidis C. Additive manufacturing:
Collaborative Research Center/Transregio 225 (SFB/ scientific and technological challenges, market
TRR 225) “Biofabrication.” The participating subprojects uptake and opportunities. Mater Today. 2018;
include A07 (PIs: Gregor Lang, Natascha Schäfer, and Dirk 21(1):22-37.
Schubert), C06 (PIs: Taufiq Ahmad and Janina Müller- doi: 10.1016/j.mattod.2017.07.001
Deile), B04 (PIs: Jürgen Groll and Süleyman Ergün), 4. Brown AC, Beer D de. Development of a stereolithography
and B02 (PIs: Jürgen Groll and Iwona Cicha). Additional (STL) slicing and G-code generation algorithm for an
support was provided by the DFG Priority Programme entry level 3-D printer. In: AFRICON, 2013. IEEE;
SPP 2416, CodeChi, project number 525934737 (PIs: 2013:1-5.
Sarah Zwingelberg and Gregor Lang). They also thank the doi: 10.1109/AFRCON.2013.6757836
Graduate School of Life Sciences (GSLS) at the University 5. Tashman JW, Shiwarski DJ, Feinberg AW. Development of
of Würzburg for supporting their Ph.D. students. a high-performance open-source 3D bioprinter. Sci Rep.
2022;12(1):22652.
Conflict of interest doi: 10.1038/s41598-022-26809-4
The authors declare they have no competing interests. 6. Correia Carreira S, Begum R, Perriman AW. 3D bioprinting:
the emergence of programmable biodesign. Adv Healthc
Author contributions Mater. 2020;9(15):e1900554.
doi: 10.1002/adhm.201900554
Conceptualization: Zan Lamberger, Gregor Lang 7. Gillispie G, Prim P, Copus J, et al. Assessment methodologies
Funding acquisition: Gregor Lang for extrusion-based bioink printability. Biofabrication.
Investigation: Zan Lamberger 2020;12(2):22003.
Methodology: Zan Lamberger, Camilla Mussoni, Nathaly doi: 10.1088/1758-5090/ab6f0d
Chicaiza Cabezas, Florian Heck, Sven Heilig 8. Lamberger Z, Schubert DW, Buechner M, et al. Advanced
Project administration: Gregor Lang, Sarah Zwingelberg optical assessment and modeling of extrusion bioprinting.
Resources: Gregor Lang, Jürgen Groll Sci Rep. 2024;14(1):13972.
Writing–original draft: Zan Lamberger doi: 10.1038/s41598-024-64039-y
Writing–review & editing: Zan Lamberger, Camilla 9. Fortunato GM, Nicoletta M, Batoni E, Vozzi G, Maria C
Mussoni, Gregor Lang, Taufiq Ahmad, Sarah de. A fully automatic non-planar slicing algorithm for
Zwingelberg, Jürgen Groll the additive manufacturing of complex geometries. Addit
Manuf. 2023;69:103541.
Ethics approval and consent to participate doi: 10.1016/j.addma.2023.103541
Not applicable. 10. Devlin BL, Allenby MC, Ren J, et al. Materials design
innovations in optimizing cellular behavior on melt
Consent for publication electrowritten (MEW) scaffolds. Adv Funct Mater.
2024;34(18):2313092.
Not applicable. doi: 10.1002/adfm.202313092
Availability of data 11. Lin Y-J, Lee TS. An adaptive tool path generation algorithm
for precision surface machining. Computer-Aided Design.
Data are available from the corresponding author upon 1999;31(4):237-247.
reasonable request. doi: 10.1016/S0010-4485(99)00024-X
Volume 11 Issue 4 (2024) 222 doi: 10.36922/ijb.6239