Page 231 - v11i4
P. 231

International Journal of Bioprinting                          Vector-based G-code generation for biofabrication




            12.  Gleadall  A.  FullControl  GCode  Designer:  Open-source   24.  Bloksma MM, Weber C, Perevyazko IY, et al. Poly(2-
               software for unconstrained design in additive manufacturing.   cyclopropyl-2-oxazoline):  from  rate  acceleration
               Addit Manuf. 2021;46:102109.                       by   cyclopropyl  to  thermoresponsive  properties.
               doi: 10.1016/j.addma.2021.102109                   Macromolecules. 2011;44(11):4057-4064.
                                                                  doi: 10.1021/ma200514n
            13.  Chansoria P, Rütsche D, Wang A, et al. Synergizing
               algorithmic design, photoclick chemistry and multi-  25.  Murenu  N, Kasteleiner  M, Lamberger Z,  et al.  Impact of
               material volumetric printing for accelerating complex shape   polymorphic microfibers for establishment of neuronal
               engineering. Adv Sci (Weinh). 2023;10(26):e2300912.   model. Nano Select. 2024;Early View:e202400122.
               doi: 10.1002/advs.202300912                        doi: 10.1002/nano.202400122
            14.  Devlin BL, Kuba S, Hall PC, et al. A melt Electrowriting   26.  Lamberger Z, Priebe V, Matthias R, Lang G. A versatile
               Toolbox for automated g‐code generation and toolpath   method to produce monomodal nano- to micro-fiber
               correction of flat and tubular constructs. Adv Mater Technol.   fragments as fillers for biofabrication.  Small Methods.
               2024;9(22):2400419.                                2024;Early View:2401060.
               doi: 10.1002/admt.202400419                        doi: 10.1002/smtd.202401060
            15.  Vernon MJ, Lu J, Padman B, et al. Engineering heart valve   27.  Türker E, Andrade Mier MS, Faber J, et al. Breast tumor cell
               interfaces  using  melt  electrowriting:  biomimetic  design   survival and morphology in a brain-like extracellular matrix
               strategies from  multi-modal  imaging.  Adv Healthc Mater.   depends on matrix composition and mechanical properties.
               2022;11(24):e2201028.                              Adv Biol (Weinh). 2024;8(9):e2400184.
               doi: 10.1002/adhm.202201028                        doi: 10.1002/adbi.202400184
            16.  Bhandari S. A graph-based algorithm for slicing unstructured   28.  Mair  V,  Paulus  I,  Groll  J,  Ryma  M.  Freeform  printing
               mesh files. Addit Manuf Lett. 2022;3:100056.       of thermoresponsive poly(2-cyclopropyl-oxazoline) as
               doi: 10.1016/j.addlet.2022.100056                  cytocompatible and on-demand dissolving template
            17.  Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A.   of hollow channel networks in cell-laden hydrogels.
               Software for bioprinting. IJB. 2020;6(3):279.      Biofabrication. 2022;14(2):2207270.
               doi: 10.18063/ijb.v6i3.279                         doi: 10.1088/1758-5090/ac57a7
            18.  Dávila JL, Manzini BM, Da Lopes  Fonsêca JH, et al. A   29.  Herzberger J, Sirrine JM, Williams CB, Long TE. Polymer
               parameterized g-code compiler for scaffolds 3D bioprinting.   design for 3D printing elastomers: recent advances in
               Bioprinting. 2022;27:e00222.                       structure, properties, and printing.  Prog Polymer Sci.
               doi: 10.1016/j.bprint.2022.e00222                  2019;97:101144.
                                                                  doi: 10.1016/j.progpolymsci.2019.101144
            19.  Ueng S-K, Huang H-K, Huang H-C. A G-code generator for
               volumetric models. Appl Sci. 2019;9(18):3868.   30.  Decante G, Costa JB, Silva-Correia J, Collins MN, Reis
               doi: 10.3390/app9183868                            RL, Oliveira JM. Engineering bioinks for 3D bioprinting.
                                                                  Biofabrication. 2021;13(3):032001.
            20.  Castilho M, Ruijter M de, Beirne S, et al. Multitechnology      doi: 10.1088/1758-5090/abec2c
               biofabrication: a new approach for the manufacturing
               of  functional  tissue  structures?  Trends Biotechnol.   31.  Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda
               2020;38(12):1316-1328.                             J. From shape to function: the next step in bioprinting. Adv
               doi: 10.1016/j.tibtech.2020.04.014                 Mater. 2020;32(12):e1906423.
                                                                  doi: 10.1002/adma.201906423
            21.  Ruijter M de, Ribeiro A, Dokter I, Castilho M, Malda
               J. Simultaneous micropatterning of fibrous meshes and   32.  Bettendorf  E,  Schmid  R,  E.  Horch  R,  et  al.  Bioprinted
               bioinks for the fabrication of living tissue constructs. Adv   keratinocyte and stem cell laden constructs for skin tissue
               Healthc Mater. 2019;8(7):e1800418.                 engineering. IJB. 2024;10(6):3925.
               doi: 10.1002/adhm.201800418                        doi: 10.36922/ijb.3925
            22.  Koch  F,  Thaden  O,  Tröndle  K,  Zengerle  R,  Zimmermann   33.  Schaefer N, Andrade Mier MS, Sonnleitner D, et
               S, Koltay P. Open-source hybrid 3D-bioprinter for   al.  Rheological  and  biological  impact  of  printable
               simultaneous printing of thermoplastics and hydrogels.   PCL-fibers  as  reinforcing  fillers  in  cell-laden
               HardwareX. 2021;10:e00230.                         spider-silk  bio-inks.  Small  Methods.  2023;7(10):
               doi: 10.1016/j.ohx.2021.e00230                     e2201717.
                                                                  doi: 10.1002/smtd.202201717
            23.  Lamberger Z, Mussoni C, Murenu N, et al.  Streamlining
               the  highly  reproducible  fabrication  of  fibrous  biomedical   34.  Choi S, Lee KY, Kim SL, et al. Fibre-infused gel scaffolds
               specimens towards standardization and high throughput.   guide cardiomyocyte alignment in 3D-printed ventricles.
               Adv Healthc Mater. 2024;Early View:e2402527.       Nat Mater. 2023;22(8):1039-1046.
               doi: 2024. 10.1002/adhm.202402527                  doi: 10.1038/s41563-023-01611-3

            Volume 11 Issue 4 (2024)                       223                                doi: 10.36922/ijb.6239
   226   227   228   229   230   231   232   233   234   235   236