Page 284 - v11i4
P. 284

International Journal of Bioprinting                              3D cell culture model for neural cell analysis




            36.  Kim A, Mo K, Choe S, Shin M, Yoon H. Comprehensive   medicine: Current and future trends. Genes Dis. 2017;4(4):
               insight into 3D bioprinting technology for brain tumor   185-195.
               modelling. IJB. 2024;10(6):4166.                   doi: 10.1016/j.gendis.2017.10.002
               doi: 10.36922/ijb.4166
                                                               44.  Yu  J, Park  SA,  Kim  WD,  et  al. Current advances  in  3D
            37.  Tang H, Zhao E, Lai Y, et al. 3D bioprinting techniques and   bioprinting  technology  and  its  applications  for  tissue
               hydrogels for osteochondral integration regeneration.  IJB.   engineering. Polymers. 2020;12(12):2958.
               2024;10(6):4472.                                   doi: 10.3390/polym12122958
               doi: 10.36922/ijb.4472
                                                               45.  Hallab NJ, Bao Q-B, Brown T. Assessment of epidural versus
            38.  Hou Y-C, Cui X, Qin Z, et al. Three-dimensional bioprinting   intradiscal biocompatibility of PEEK implant debris: an in
               of artificial blood vessel: process, bioinks, and challenges.   vivo rabbit model. Eur Spine J. 2013;22:2740-2751.
               IJB. 2023;9(4):740.                                doi: 10.1007/s00586-013-2904-4
               doi: 10.18063/ijb.740
                                                               46.  Stratton-Powell AA, Pasko KM, Brockett CL, Tipper JL. The
            39.  Du Z, Zhu Z, Wang Y. The degree of peri-implant osteolysis   biologic response to polyetheretherketone (PEEK) wear
               induced by PEEK, CoCrMo, and HXLPE wear particles: a   particles in total joint replacement: a systematic review. Clin
               study based on a porous Ti6Al4V implant in a rabbit model.   Orthop Relat Res. 2016;474(11):2394-2404.
               J Orthop Surg Res. 2018;13(1):23.                  doi: 10.1007/s11999-016-4976-z
               doi: 10.1186/s13018-018-0736-y
                                                               47.  Yarrow-Wright LE. Development of a Novel 3D In Vitro Model
            40.  Hallab NJ, McAllister K, Brady M, Jarman-Smith M.   to Measure Cellular Response to Antioxidant Doped Highly
               Macrophage reactivity to different polymers demonstrates   Cross-Linked Ultra High Molecular Weight Polyethylene Wear
               particle size- and material-specific reactivity: PEEK-  Debris. University of Leeds; 2018.
                      ®
               OPTIMA  particles versus UHMWPE particles in the      https://etheses.whiterose.ac.uk/id/oai_id/oai:etheses.
               submicron, micron, and 10 micron size ranges.  J Biomed   whiterose.ac.uk:24128
               Mater Res B Appl Biomater. 2012;100B(2):480-492.  48.  Kölle L, Ignasiak D, Ferguson SJ, Helgason B. Ceramics in
               doi: 10.1002/jbm.b.31974
                                                                  total disc replacements: a scoping review.  Clin Biomech.
            41.  Green TR, Fisher J, Stone M, Wroblewski BM, Ingham   2022;100:105796.
               E. Polyethylene particles of a ‘critical size’ are necessary   doi: 10.1016/j.clinbiomech.2022.105796
               for the induction of cytokines by macrophages in vitro.   49.  Jaksa L, Aryeetey OJ, Hatamikia S, et al. 3D-printed multi-
               Biomaterials. 1998;19(24):2297-2302.               material liver model with simultaneous mechanical and
               doi: 10.1016/s0142-9612(98)00140-9
                                                                  radiological tissue-mimicking features for improved realism.
            42.  Germain M, Hatton A, Williams S, et al. Comparison of   IJB. 2023;9(4):721.
               the cytotoxicity of clinically relevant cobalt–chromium   doi: 10.18063/ijb.721
               and alumina ceramic wear particles in vitro. Biomaterials.   50.  Yuk JC, Nam KH, Park SH. Additive-manufactured
               2003;24(3):469-479.                                synthetic bone model with biomimicking tunable
               doi: 10.1016/s0142-9612(02)00360-5
                                                                  mechanical properties for evaluation of medical implants.
            43.  Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting   IJB. 2024;10(1):1067.
               technologies in tissue engineering and regenerative   doi: 10.36922/ijb.1067



























            Volume 11 Issue 4 (2025)                       276                            doi: 10.36922/IJB025180174
   279   280   281   282   283   284   285   286   287   288   289