Page 284 - v11i4
P. 284
International Journal of Bioprinting 3D cell culture model for neural cell analysis
36. Kim A, Mo K, Choe S, Shin M, Yoon H. Comprehensive medicine: Current and future trends. Genes Dis. 2017;4(4):
insight into 3D bioprinting technology for brain tumor 185-195.
modelling. IJB. 2024;10(6):4166. doi: 10.1016/j.gendis.2017.10.002
doi: 10.36922/ijb.4166
44. Yu J, Park SA, Kim WD, et al. Current advances in 3D
37. Tang H, Zhao E, Lai Y, et al. 3D bioprinting techniques and bioprinting technology and its applications for tissue
hydrogels for osteochondral integration regeneration. IJB. engineering. Polymers. 2020;12(12):2958.
2024;10(6):4472. doi: 10.3390/polym12122958
doi: 10.36922/ijb.4472
45. Hallab NJ, Bao Q-B, Brown T. Assessment of epidural versus
38. Hou Y-C, Cui X, Qin Z, et al. Three-dimensional bioprinting intradiscal biocompatibility of PEEK implant debris: an in
of artificial blood vessel: process, bioinks, and challenges. vivo rabbit model. Eur Spine J. 2013;22:2740-2751.
IJB. 2023;9(4):740. doi: 10.1007/s00586-013-2904-4
doi: 10.18063/ijb.740
46. Stratton-Powell AA, Pasko KM, Brockett CL, Tipper JL. The
39. Du Z, Zhu Z, Wang Y. The degree of peri-implant osteolysis biologic response to polyetheretherketone (PEEK) wear
induced by PEEK, CoCrMo, and HXLPE wear particles: a particles in total joint replacement: a systematic review. Clin
study based on a porous Ti6Al4V implant in a rabbit model. Orthop Relat Res. 2016;474(11):2394-2404.
J Orthop Surg Res. 2018;13(1):23. doi: 10.1007/s11999-016-4976-z
doi: 10.1186/s13018-018-0736-y
47. Yarrow-Wright LE. Development of a Novel 3D In Vitro Model
40. Hallab NJ, McAllister K, Brady M, Jarman-Smith M. to Measure Cellular Response to Antioxidant Doped Highly
Macrophage reactivity to different polymers demonstrates Cross-Linked Ultra High Molecular Weight Polyethylene Wear
particle size- and material-specific reactivity: PEEK- Debris. University of Leeds; 2018.
®
OPTIMA particles versus UHMWPE particles in the https://etheses.whiterose.ac.uk/id/oai_id/oai:etheses.
submicron, micron, and 10 micron size ranges. J Biomed whiterose.ac.uk:24128
Mater Res B Appl Biomater. 2012;100B(2):480-492. 48. Kölle L, Ignasiak D, Ferguson SJ, Helgason B. Ceramics in
doi: 10.1002/jbm.b.31974
total disc replacements: a scoping review. Clin Biomech.
41. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham 2022;100:105796.
E. Polyethylene particles of a ‘critical size’ are necessary doi: 10.1016/j.clinbiomech.2022.105796
for the induction of cytokines by macrophages in vitro. 49. Jaksa L, Aryeetey OJ, Hatamikia S, et al. 3D-printed multi-
Biomaterials. 1998;19(24):2297-2302. material liver model with simultaneous mechanical and
doi: 10.1016/s0142-9612(98)00140-9
radiological tissue-mimicking features for improved realism.
42. Germain M, Hatton A, Williams S, et al. Comparison of IJB. 2023;9(4):721.
the cytotoxicity of clinically relevant cobalt–chromium doi: 10.18063/ijb.721
and alumina ceramic wear particles in vitro. Biomaterials. 50. Yuk JC, Nam KH, Park SH. Additive-manufactured
2003;24(3):469-479. synthetic bone model with biomimicking tunable
doi: 10.1016/s0142-9612(02)00360-5
mechanical properties for evaluation of medical implants.
43. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting IJB. 2024;10(1):1067.
technologies in tissue engineering and regenerative doi: 10.36922/ijb.1067
Volume 11 Issue 4 (2025) 276 doi: 10.36922/IJB025180174