Page 283 - v11i4
P. 283
International Journal of Bioprinting 3D cell culture model for neural cell analysis
14. Zeh A, Planert M, Siegert G, Lattke P, Held A, Hein W. doi: 10.1007/s10753-016-0306-6
Release of cobalt and chromium ions into the serum 25. Hallab NJ, Cunningham BW, Jacobs JJ. Spinal implant
following implantation of the metal-on-metal Maverick- debris-induced osteolysis. Spine (Phila Pa 1976).
type artificial lumbar disc (Medtronic Sofamor Danek). 2003;28(20S):S125-S138.
Spine (Phila Pa 1976). 2007;32(3):348-352.
doi: 10.1097/01.brs.0000253599.89694.c0 doi: 10.1097/00007632-200310151-00006
26. Lee H, Phillips JB, Hall RM, Tipper JL. Neural cell responses
15. AlZeedi M, Al Rawahi S, Muwanis M, Alraiyes TM, Al Farii
H, Jarzem P. Pseudotumor after total disc replacement in the to wear debris from metal-on-metal total disc replacements.
lumbar spine: a case report and review of the literature. N Eur Spine J. 2020;29(11):2701-2712.
Am Spine Soc J. 2022;9:100107. doi: 10.1007/s00586-019-06177-w
doi: 10.1016/j.xnsj.2022.100107 27. Papageorgiou I, Marsh R, Tipper JL, Hall RM, Fisher J,
Ingham E. Interaction of micron and nano‐sized particles
16. Tavakoli J, Hu Q, Tipper JL, Tang Y. Aggregation-induced
emission biomarkers for early detection of orthopaedic with cells of the dura mater. J Biomed Mater Res B Appl
implant failure. Aggregate. 2024;5(6):e645. Biomater. 2014;102(7):1496-1505.
doi: 10.1002/agt2.645 doi: 10.1002/jbm.b.33129
17. Austen S, Punt IM, Cleutjens JP, et al. Clinical, radiological, 28. Behl B, Papageorgiou I, Brown C, et al. Biological
histological and retrieval findings of Activ-L and Mobidisc effects of cobalt-chromium nanoparticles and ions on
total disc replacements: a study of two patients. Eur Spine J. dural fibroblasts and dural epithelial cells. Biomaterials.
2012;21:513-520. 2013;34(14):3547-3558.
doi: 10.1007/s00586-011-2141-7 doi: 10.1016/j.biomaterials.2013.01.023
18. Yang G, Gu M, Chen W, et al. SPHK-2 promotes the particle- 29. Papageorgiou I, Abberton T, Fuller M, Tipper JL, Fisher
induced inflammation of RAW264.7 by maintaining J, Ingham E. Biological effects of clinically relevant cocr
consistent expression of TNF-α and IL-6. Inflammation. nanoparticles in the dura mater: an organ culture study.
2018;41(4):1498-1507. Nanomaterials. 2014;4(2):485-504.
doi: 10.1007/s10753-018-0795-6 doi: 10.3390/nano4020485
19. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. 30. Cunningham BW, Hallab NJ, Hu N, McAfee PC. Epidural
Interleukin-6 directly inhibits osteoclast differentiation application of spinal instrumentation particulate wear
by suppressing receptor activator of NF-kappaB signaling debris: a comprehensive evaluation of neurotoxicity using an
pathways. J Biol Chem. 2008;283(17):11535-11540. in vivo animal model. J Neurosurg Spine. 2013;19(3):336-350.
doi: 10.1074/jbc.m607999200 doi: 10.3171/2013.5.spine13166
20. Ayers R, Miller M, Schowinsky J, Burger E, Patel V, 31. Stoodley MA, Jones NR, Brown CJ. Evidence for rapid
Kleck C. Three cases of metallosis associated with spine fluid flow from the subarachnoid space into the spinal cord
instrumentation. J Mater Sci Mater Med. 2017;29(1):3. central canal in the rat. Brain Res. 1996;707(2):155-164.
doi: 10.1007/s10856-017-6011-7 doi: 10.1016/0006-8993(95)01228-1
21. Punt IM, Cleutjens JPM, de Bruin T, et al. Periprosthetic 32. Stoodley MA, Brown SA, Brown CJ, Jones NR. Arterial
tissue reactions observed at revision of total intervertebral pulsation-dependent perivascular cerebrospinal fluid flow
disc arthroplasty. Biomaterials. 2009;30(11):2079-2084. into the central canal in the sheep spinal cord. J Neurosurg.
doi: 10.1016/j.biomaterials.2008.12.071 1997;86(4):686-693.
doi: 10.3171/jns.1997.86.4.0686
22. Cunningham BW, Orbegoso CM, Dmitriev AE, et al. The
effect of spinal instrumentation particulate wear debris: an 33. Rad MA, Mahmodi H, Filipe EC, Cox TR, Kabakova I, Tipper
in vivo rabbit model and applied clinical study of retrieved JL. Micromechanical characterisation of 3D bioprinted
instrumentation cases. Spine J. 2003;3(1):19-32. neural cell models using Brillouin microspectroscopy.
doi: 10.1016/S1529-9430(02)00443-6 Bioprinting. 2022;25:e00179.
doi: 10.1016/j.bprint.2021.e00179
23. Lin T-h, Yao Z, Sato T, et al. Suppression of wear-
particle-induced pro-inflammatory cytokine and 34. Asif IM. Characterisation and Biological Impact of Wear
chemokine production in macrophages via NF-κB decoy Particles from Composite Ceramic Hip Replacements.
oligodeoxynucleotide: a preliminary report. Acta Biomater. University of Leeds; 2018.
2014;10(8):3747-3755. https://etheses.whiterose.ac.uk/id/oai_id/oai:etheses.
doi: 10.1016/j.actbio.2014.04.034 whiterose.ac.uk:20563
24. Luo G, Li Z, Wang Y, et al. Resveratrol protects against 35. Liu A, Richards L, Bladen CL, Ingham E, Fisher J, Tipper
titanium particle-induced aseptic loosening through JL. The biological response to nanometre-sized polymer
reduction of oxidative stress and inactivation of NF-κB. particles. Acta Biomater. 2015;23:38-51.
Inflammation. 2016;39(2):775-785. doi: 10.1016/j.actbio.2015.05.016
Volume 11 Issue 4 (2025) 275 doi: 10.36922/IJB025180174