Page 282 - v11i4
P. 282

International Journal of Bioprinting                              3D cell culture model for neural cell analysis




            administering them in a 3D-bioprinted GelMA hydrogel,   review of outcomes with a minimum of 5 years follow-up.
            we enabled precise and reproducible evaluation of particle–  Global Spine J. 2024;14(6):1827-1837.
            cell interactions. Short-term exposure did not significantly   doi: 10.1177/21925682241228756
            impact cell viability or ROS production across the tested   3.   Zeegers W, Bohnen L, Laaper M, Verhaegen M. Artificial
            conditions. However, our results revealed significant   disc replacement with the modular type SB Charite III:
            variations  in  cell  viability  and  ROS  production,  which   2-year results in 50 prospectively studied patients. Eur Spine
            were influenced by culture time, biomaterial type, and   J. 1999;8:210-217.
            the interactions between particles and cells. In particular,   doi: 10.1007/s005860050160
            CoCrMo particles had a greater impact on cell viability   4.   Vicars R, Hyde PJ, Brown TD, et al. The effect of anterior–
            compared to the other biomaterials tested. These findings   posterior shear load on the wear of ProDisc-L TDR.  Eur
            underscore the potential of this bioprinted platform as a   Spine J. 2010;19(8):1356-1362.
            powerful tool for future long-term mechanistic studies and   doi: 10.1007/s00586-010-1396-8
            preclinical assessments of spinal implant biocompatibility.  5.   Vicars  R,  Prokopovich  P,  Brown  TD,  et  al. The  effect  of
                                                                  anterior-posterior shear on the wear of CHARITÉ total disc
            Acknowledgments                                       replacement. Spine (Phila Pa 1976). 2012;37(9):E528-E534.
            None.                                                 doi: 10.1097/BRS.0b013e31823cbd6e
                                                               6.   Hallab NJ. A review of the biologic effects of spine implant
            Funding                                               debris: fact from fiction. SAS J. 2009;3(4):143-160.
                                                                  doi: 10.1016/j.esas.2009.11.005
            None.
                                                               7.   Chang  B-S,  Brown  PR,  Sieber  A,  Valdevit  A,  Tateno  K,
            Conflict of interest                                  Kostuik JP. Evaluation of the biological response of wear
                                                                  debris. Spine J. 2004;4(6):S239-S244.
            The authors declare they have no competing interests     doi: 10.1016/j.spinee.2004.07.014

            Author contributions                               8.   Ganko R, Madhavan A, Hamouda W, et al. Spinal
                                                                  implant wear particles: generation, characterization,
            Conceptualization: Joanne L. Tipper                   biological impacts, and future considerations.  iScience.
            Formal analysis:  Joanne L. Tipper, David J. Wen,     2025;28(4):112193.
               Javad Tavakoli                                     doi: 10.1016/j.isci.2025.112193
            Investigation: David J. Wen                        9.   Punt IM, Austen S, Cleutjens JP, et al. Are periprosthetic
            Methodology: Joanne L. Tipper, David J. Wen, Javad Tavakoli  tissue  reactions observed after  revision of total disc
            Writing–original draft: Javad Tavakoli, David J. Wen  replacement comparable to the reactions observed after
            Writing–review & editing: Joanne L. Tipper, Javad Tavakoli  total hip or knee revision surgery? Spine (Phila Pa 1976).
                                                                  2012;37(2):150-159.
            Ethics approval and consent to participate            doi: 10.1097/brs.0b013e3182154c22
            Not applicable.                                    10.  San-Juan  R,  Paredes  I,  Ramírez-Nava E,  et  al.  Reduction
                                                                  of instrumentation-related spine surgical site infections
            Consent for publication                               after optimization of surgical techniques. a single center
                                                                  retrospective analysis. Global Spine J. 2024;14(2):438-446.
            Not applicable.                                       doi: 10.1177/21925682221109557
                                                               11.  Xu R, Ebraheim NA, Nadaud MC, Phillips ER. Local tissue
            Availability of data                                  of the lumbar spine response to titanium plate-screw system.
            Data  is  available  from  the  corresponding  author  upon   Spine (Phila Pa 1976). 1996;21(7):871-873.
            reasonable request.                                   doi: 10.1097/00007632-199604010-00020
                                                               12.  Lin T-h, Tamaki Y, Pajarinen J, et al. Chronic inflammation
            References                                            in biomaterial-induced periprosthetic osteolysis: NF-κB as a
                                                                  therapeutic target. Acta Biomater. 2014;10(1):1-10.
            1.   Tavakoli J, Diwan AD, Tipper JL. Advanced strategies for the   doi: 10.1016/j.actbio.2013.09.034
               regeneration of lumbar disc annulus fibrosus. Int J Mol Sci.   13.  Zairi F, Remacle JM, Allaoui M, Assaker R. Delayed
               2020;21(14):4889.                                  hypersensitivity  reaction  caused  by metal-on-metal
               doi: 10.3390/ijms21144889
                                                                  total disc replacement: case report.  J Neurosurg Spine.
            2.   Wen DJ, Tavakoli J, Tipper JL. Lumbar total disc   2013;19(3):389-391.
               replacements for degenerative disc disease: a systematic   doi: 10.3171/2013.6.spine121010

            Volume 11 Issue 4 (2025)                       274                            doi: 10.36922/IJB025180174
   277   278   279   280   281   282   283   284   285   286   287