Page 453 - v11i4
P. 453

International Journal of Bioprinting                             Osteocytic Wnt7b-PKCδ against microgravity




               hormone as affected by skeletal unloading. J Bone Miner Res.   59.  Hwang YS, Cho J, Tay F, et al. The use of murine embryonic
               1997;12:1068-1074.                                 stem cells, alginate encapsulation, and rotary microgravity
               doi: 10.1359/jbmr.1997.12.7.1068                   bioreactor in bone tissue engineering.  Biomaterials.
                                                                  2009;30:499-507.
            52.  Spatz JM, Ellman R, Cloutier AM,  et al. Sclerostin      doi: 10.1016/j.biomaterials.2008.07.028
               antibody inhibits skeletal deterioration in mice exposed to
               partial weight-bearing. Life Sci Space Res (Amst). 2017;12:   60.  Avitabile E, Fusco L, Minardi S, et al. Bioinspired scaffold
               32-38.                                             action under the extreme physiological conditions of
               doi: 10.1016/j.lssr.2017.01.001                    simulated space flights: osteogenesis enhancing under
                                                                  microgravity. Front Bioeng Biotechnol. 2020;8:722.
            53.  Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk      doi: 10.3389/fbioe.2020.00722
               in rats using PTH 1-34.  Trends Endocrinol Metab. 2001;
               12:383.                                         61.  Hann SY, Cui H, Esworthy T, et al. Dual 3D printing for
               doi: 10.1016/s1043-2760(01)00489-1                 vascularized  bone  tissue  regeneration.  Acta Biomater.
                                                                  2021;123:263-274.
            54.  Hildreth BE, 3 , Werbeck JL, Thudi NK,  et al. PTHrP      doi: 10.1016/j.actbio.2021.01.012
                           rd
               1-141 and 1-86 increase in vitro bone formation. J Surg Res.
               2010;162:e9-e17.                                62.  Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired
               doi: 10.1016/j.jss.2010.02.023                     3D tissue constructs for skin regeneration.  Biomaterials.
                                                                  2020;258:120287.
            55.  Costa-Almeida R, Granja PL, Gomes ME. Gravity, tissue      doi: 10.1016/j.biomaterials.2020.120287
               engineering, and the missing link.  Trends  Biotechnol.
               2018;36:343-347.                                63.  Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds
               doi: 10.1016/j.tibtech.2017.10.017                 with dual small molecule delivery for mandibular bone
                                                                  regeneration. Biofabrication. 2020;12:035020.
            56.  Artegiani B, Clevers H. Use and application of 3D-organoid      doi: 10.1088/1758-5090/ab906e
               technology. Hum Mol Genet. 2018;27:R99-R107.
               doi: 10.1093/hmg/ddy187                         64.  Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF
                                                                  loaded 3D printed hydroxyapatite composite scaffolds with
            57.  He J, Zhang X, Xia X, et al. Organoid technology for tissue   enhanced osteogenic capacity in vitro and in vivo. Mater Sci
               engineering. J Mol Cell Biol. 2020;12:569-579.     Eng C Mater Biol Appl. 2020;112:110893.
               doi: 10.1093/jmcb/mjaa012                          doi: 10.1016/j.msec.2020.110893
            58.  Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB.   65.  West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The
               Bioengineering approaches for the advanced organoid   role of the microenvironment in controlling the fate of
               research. Adv Mater. 2021;33:e2007949.             bioprinted stem cells. Chem Rev. 2020; 120:11056-11092.
               doi: 10.1002/adma.202007949                        doi: 10.1021/acs.chemrev.0c00126


































            Volume 11 Issue 4 (2025)                       445                            doi: 10.36922/IJB025240238
   448   449   450   451   452   453   454   455   456   457   458