Page 451 - v11i4
P. 451
International Journal of Bioprinting Osteocytic Wnt7b-PKCδ against microgravity
3. Durnova G, Kaplansky A, Morey-Holton E. doi: 10.3389/fcell.2020.00096
Histomorphometric study of tibia of rats exposed aboard 17. Silvani G, Basirun C, Wu H, et al. A 3D‐bioprinted
American spacelab life sciences 2 shuttle mission. J Gravit vascularized glioblastoma‐on‐a‐chip for studying the impact
Physiol. 1996;3:80-81.
of simulated microgravity as a novel pre‐clinical approach in
4. Carmeliet G, Bouillon R. The effect of microgravity on brain tumor therapy. Adv Ther. 2021;4:2100106.
morphology and gene expression of osteoblasts in vitro. doi: 10.1002/adtp.202100106
Faseb J. 1999; 13(Suppl):S129-S134. 18. Van Ombergen A, Chalupa-Gantner F, Chansoria P, et al.
doi: 10.1096/fasebj.13.9001.s129
3D bioprinting in microgravity: opportunities, challenges,
5. Smith SM, Wastney ME, O’Brien KO, et al. Bone markers, and possible applications in space. Adv Healthc Mater.
calcium metabolism, and calcium kinetics during extended- 2023;12:e2300443.
duration space flight on the mir space station. J Bone Miner doi: 10.1002/adhm.202300443
Res. 2005; 20:208-218. 19. Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system
doi: 10.1359/jbmr.041105
to produce human-scale tissue constructs with structural
6. Vico L, Hargens A. Skeletal changes during and after integrity. Nat Biotechnol. 2016;34:312-319.
spaceflight. Nat Rev Rheumatol. 2018;14: 229-245. doi: 10.1038/nbt.3413
doi: 10.1038/nrrheum.2018.37
20. Mochi F, Scatena E, Rodriguez D, Ginebra M-P, Del Gaudio
7. Robling AG, Bonewald LF. The osteocyte: new insights. C. Scaffold-based bone tissue engineering in microgravity:
Annu Rev Physiol. 2020;82:485-506. potential, concerns and implications. NPJ Microgravity.
doi: 10.1146/annurev-physiol-021119-034332 2022;8:45.
doi: 10.1038/s41526-022-00236-1
8. Delgado-Calle J, Bellido T. The osteocyte as a signaling cell.
Physiol Rev. 2022;102:379-410. 21. Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate
doi: 10.1152/physrev.00043.2020 the anabolic actions of canonical Wnt/β-catenin signaling in
bone. Proc Natl Acad Sci USA. 2015;112:E478-E486.
9. Spatz JM, Wein MN, Gooi JH, et al. The Wnt inhibitor
sclerostin is up-regulated by mechanical unloading in doi: 10.1073/pnas.1409857112
osteocytes in vitro. J Biol Chem. 2015;290:16744-16758. 22. Morey-Holton ER, Globus RK. Hindlimb unloading of
doi: 10.1074/jbc.M114.628313 growing rats: a model for predicting skeletal changes during
space flight. Bone. 1998;22:83S-88S.
10. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response doi: 10.1016/S8756-3282(98)00019-2
to mechanical unloading through antagonizing Wnt/beta-
catenin signaling. J Bone Miner Res. 2009;24:1651-1661. 23. Wang P, Wang X, Wang B, Li X. 3D printing of osteocytic
doi: 10.1359/jbmr.090411 Dll4 integrated with PCL for cell fate determination
towards osteoblasts in vitro. Bio-Design Manuf. 2022;5:
11. Tu X, Rhee Y, Condon KW, et al. Sost downregulation and 497-511.
local Wnt signaling are required for the osteogenic response doi: 10.1007/s42242-022-00196-1
to mechanical loading. Bone. 2012;50:209-217.
doi: 10.1016/j.bone.2011.10.025 24. Gong W, Li M, Zhao L, et al. Sustained release of a highly
specific GSK3β inhibitor SB216763 in the PCL scaffold
12. Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. creates an osteogenic niche for osteogenesis, anti-
Microgravity stress: bone and connective tissue. Compr adipogenesis, and potential angiogenesis. Front Bioeng
Physiol. 2016;6:645-686. Biotechnol. 2023;11:1215233.
doi: 10.1002/cphy.c130027
doi: 10.3389/fbioe.2023.1215233
13. Tu X, Joeng KS, Nakayama KI, et al. Noncanonical Wnt 25. Liu Y, Ruan X, Li J, et al. The osteocyte stimulated by Wnt
signaling through G protein-linked PKCdelta activation agonist SKL2001 is a safe osteogenic niche improving
promotes bone formation. Dev Cell. 2007;12:113-127. bioactivities in a polycaprolactone and cell integrated 3d
doi: 10.1016/j.devcel.2006.11.003
module. Cells. 2022;11:831.
14. Chen J, Tu X, Esen E, et al. WNT7B promotes bone formation doi: 10.3390/cells11050831
in part through mTORC1. PLoS Genet. 2014;10:e1004145. 26. Yuste I, Luciano FC, González-Burgos E, Lalatsa A,
doi: 10.1371/journal.pgen.1004145
Serrano DR. Mimicking bone microenvironment: 2D and
15. Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in 3D in vitro models of human osteoblasts. Pharmacol Res.
microgravity directed tissue engineering. Adv Healthc 2021;169:105626.
Mater. 2023;12:e2202768. doi: 10.1016/j.phrs.2021.105626
doi: 10.1002/adhm.202202768
27. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to
16. Bradbury P, Wu H, Choi JU, et al. Modeling the impact of model immune responses to solid tumours: a step towards
microgravity at the cellular level: implications for human improving and creating personalized immunotherapies. Nat
disease. Front Cell Dev Biol. 2020;8;96. Rev Immunol. 2024;24:18-32.
Volume 11 Issue 4 (2025) 443 doi: 10.36922/IJB025240238

