Page 451 - v11i4
P. 451

International Journal of Bioprinting                             Osteocytic Wnt7b-PKCδ against microgravity




            3.  Durnova  G,  Kaplansky  A,  Morey-Holton  E.      doi: 10.3389/fcell.2020.00096
               Histomorphometric study of tibia of rats exposed aboard   17.  Silvani G, Basirun C, Wu H,  et al. A 3D‐bioprinted
               American spacelab life sciences 2 shuttle mission. J Gravit   vascularized glioblastoma‐on‐a‐chip for studying the impact
               Physiol. 1996;3:80-81.
                                                                  of simulated microgravity as a novel pre‐clinical approach in
            4.   Carmeliet G, Bouillon R. The effect of microgravity on   brain tumor therapy. Adv Ther. 2021;4:2100106.
               morphology and gene expression of osteoblasts in vitro.   doi: 10.1002/adtp.202100106
               Faseb J. 1999; 13(Suppl):S129-S134.             18.  Van Ombergen A, Chalupa-Gantner F, Chansoria P, et al.
               doi: 10.1096/fasebj.13.9001.s129
                                                                  3D bioprinting in microgravity: opportunities, challenges,
            5.   Smith SM, Wastney ME, O’Brien KO, et al. Bone markers,   and possible applications in space.  Adv Healthc Mater.
               calcium metabolism, and calcium kinetics during extended-  2023;12:e2300443.
               duration space flight on the mir space station. J Bone Miner      doi: 10.1002/adhm.202300443
               Res. 2005; 20:208-218.                          19.  Kang HW, Lee SJ, Ko IK,  et al. A 3D bioprinting system
               doi: 10.1359/jbmr.041105
                                                                  to produce human-scale tissue constructs with structural
            6.   Vico  L,  Hargens  A.  Skeletal  changes  during  and  after   integrity. Nat Biotechnol. 2016;34:312-319.
               spaceflight. Nat Rev Rheumatol. 2018;14: 229-245.      doi: 10.1038/nbt.3413
               doi: 10.1038/nrrheum.2018.37
                                                               20.  Mochi F, Scatena E, Rodriguez D, Ginebra M-P, Del Gaudio
            7.   Robling AG,  Bonewald LF. The osteocyte:  new insights.   C. Scaffold-based bone tissue engineering in microgravity:
               Annu Rev Physiol. 2020;82:485-506.                 potential, concerns and implications.  NPJ Microgravity.
               doi: 10.1146/annurev-physiol-021119-034332         2022;8:45.
                                                                  doi: 10.1038/s41526-022-00236-1
            8.   Delgado-Calle J, Bellido T. The osteocyte as a signaling cell.
               Physiol Rev. 2022;102:379-410.                  21.  Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate
               doi: 10.1152/physrev.00043.2020                    the anabolic actions of canonical Wnt/β-catenin signaling in
                                                                  bone. Proc Natl Acad Sci USA. 2015;112:E478-E486.
            9.   Spatz JM, Wein MN, Gooi JH,  et al. The Wnt inhibitor
               sclerostin is  up-regulated  by  mechanical  unloading in      doi: 10.1073/pnas.1409857112
               osteocytes in vitro. J Biol Chem. 2015;290:16744-16758.   22.  Morey-Holton ER, Globus RK. Hindlimb unloading of
               doi: 10.1074/jbc.M114.628313                       growing rats: a model for predicting skeletal changes during
                                                                  space flight. Bone. 1998;22:83S-88S.
            10.  Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response      doi: 10.1016/S8756-3282(98)00019-2
               to mechanical unloading through antagonizing Wnt/beta-
               catenin signaling. J Bone Miner Res. 2009;24:1651-1661.   23.  Wang P, Wang X, Wang B, Li X. 3D printing of osteocytic
               doi: 10.1359/jbmr.090411                           Dll4  integrated  with  PCL  for  cell  fate  determination
                                                                  towards osteoblasts in vitro.  Bio-Design Manuf. 2022;5:
            11.  Tu X, Rhee Y, Condon KW, et al. Sost downregulation and   497-511.
               local Wnt signaling are required for the osteogenic response      doi: 10.1007/s42242-022-00196-1
               to mechanical loading. Bone. 2012;50:209-217.
               doi: 10.1016/j.bone.2011.10.025                 24.  Gong W, Li M, Zhao L, et al. Sustained release of a highly
                                                                  specific GSK3β inhibitor SB216763 in the PCL scaffold
            12.  Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV.   creates an osteogenic niche for osteogenesis, anti-
               Microgravity stress: bone and connective tissue.  Compr   adipogenesis, and potential angiogenesis.  Front Bioeng
               Physiol. 2016;6:645-686.                           Biotechnol. 2023;11:1215233.
               doi: 10.1002/cphy.c130027
                                                                  doi: 10.3389/fbioe.2023.1215233
            13.  Tu X, Joeng KS, Nakayama KI,  et al. Noncanonical Wnt   25.  Liu Y, Ruan X, Li J, et al. The osteocyte stimulated by Wnt
               signaling through G protein-linked PKCdelta activation   agonist SKL2001 is a safe osteogenic niche improving
               promotes bone formation. Dev Cell. 2007;12:113-127.   bioactivities in a polycaprolactone and cell integrated 3d
               doi: 10.1016/j.devcel.2006.11.003
                                                                  module. Cells. 2022;11:831.
            14.  Chen J, Tu X, Esen E, et al. WNT7B promotes bone formation      doi: 10.3390/cells11050831
               in part through mTORC1. PLoS Genet. 2014;10:e1004145.   26.  Yuste  I,  Luciano  FC,  González-Burgos  E,  Lalatsa  A,
               doi: 10.1371/journal.pgen.1004145
                                                                  Serrano DR. Mimicking bone microenvironment: 2D and
            15.  Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in   3D in vitro models of human osteoblasts. Pharmacol Res.
               microgravity directed tissue engineering.  Adv Healthc   2021;169:105626.
               Mater. 2023;12:e2202768.                           doi: 10.1016/j.phrs.2021.105626
               doi: 10.1002/adhm.202202768
                                                               27.  Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to
            16.  Bradbury P, Wu H, Choi JU, et al. Modeling the impact of   model immune responses to solid tumours: a step towards
               microgravity at the cellular level: implications for human   improving and creating personalized immunotherapies. Nat
               disease. Front Cell Dev Biol. 2020;8;96.           Rev Immunol. 2024;24:18-32.

            Volume 11 Issue 4 (2025)                       443                            doi: 10.36922/IJB025240238
   446   447   448   449   450   451   452   453   454   455   456