Page 114 - IJOCTA-15-3
P. 114

U. Arora, S. Singh, V. Vijayakumar, A. Shukla / IJOCTA, Vol.15, No.3, pp.483-492 (2025)
                Assume that P be the set of all functions         By using this admissible control function, the
            z ∈ L 2 (I, Y) determined on I with z(0) = y 0 ,  state equation (4)-(5) becomes,
                                                   c
                                                     ν
            z(b) = y 1 and the fractional derivative D z ex-    c D y(ϱ) =Ay(ϱ) + D z(ϱ) − Az(ϱ)
                                                                                     ν
                                                                   ν
                                                                                  c
                                                     t
            ists almost everywhere for ν ∈ (0, 1]. Noting that     ϱ                 ϱ

                                                                                       Z  ϱ
            P be the set of all feasible trajectories for (1)-(2).         − G ϱ, z(ϱ),    g(ϱ, α, z(α))dα
                                                                                        0
            Definition 6. The system (1)-(2) is called T-
                                                                                         ϱ

                                                                                       Z
            controllable provided that for every z ∈ P, ∃ u ∈              + G ϱ, y(ϱ),    g(ϱ, α, y(α))dα
            L 2 (I, V) such that y(ϱ) fulfills y(ϱ) = z(ϱ) almost                       0
            everywhere on I.                                        y(0) =y 0 .
                Clearly, T-controllability ⇒ Complete con-    Let us make the substitution w(ϱ) = y(ϱ) − z(ϱ),
            trollability.                                     Then for w(ϱ), we have the subsequent fractional
                We show that the trajectory controllability of  system
            (1)-(2) in the following two cases:                                            Z  ϱ
                                                              c  ν
            Case-I: If the control appears linearly:           D w(ϱ) =Aw(ϱ) + G ϱ, y(ϱ),      g(ϱ, α, y(α))dα
                                                                 ϱ
                                                                                             0
                Let us take a look at the linear control sys-                       Z  ϱ
            tem, that is, B(ϱ, v(ϱ)) = b(ϱ)v(ϱ), where b : IR            − G ϱ, z(ϱ),    g(ϱ, α, z(α))dα ,
            and u : IV, then the system (1)-(2) becomes                                0
              c  ν                                                  w(0) = 0.
               D y(ϱ) =Ay(ϱ) + b(ϱ)v(ϱ)
                 ϱ
                                        ϱ
                                    Z                       It follows that the solution of the above system
                         + G ϱ, y(ϱ),    g(ϱ, α, y(α))dα ,    with w(0) = 0 is described as
                                       0                              Z  ϱ
                        ϱ ∈ I, ν ∈ (0, 1],                     w(ϱ) =     (ϱ − α) ν−1 ˆ
                                                                                    S ν (ϱ − α)
                                                        (4)             0
                                                                                Z  α
                              y(0) = y 0 .              (5)
                                                                       G α, y(α),     g(α, β, y(β))dβ
            The sufficient conditions to prove the trajectory                      0
                                                                                   Z  α
            controllability of (4)-(5) are as follows:
                Assumptions [I] [38]                                   − G α, z(α),    g(α, β, z(β))dβ  dα.
                                                                                     0
                (1) A generates a strongly continuous semi-   Thus,
                    group {S(ϱ) : ϱ ≥ 0} on Y.                                      ν  Z  ϱ
                                                                            Mν     b
                (2) b(ϱ) by no means disappear on I.             ∥w(ϱ)∥ ≤                 δ 1 ∥y(α) − z(α)∥
                (3) G is Lipschitz continuous w.r.t. (i) and              Γ(1 + ν) ν   0
                                                                                  α
                                                                               
 Z
                    (ii) argument, that is, ∃ δ 1 > 0 and δ 2 > 0
                                                                          + δ 2  
  g(α, β, x(β))dβ
                    such that                                                  
  0
                                                                               α
                                                                             Z
            ∥G(ϱ, y 1 , y 1 )−G(ϱ, x 2 , y 2 )∥ ≤ δ 1 ∥y 1 −x 2 ∥+δ 2 ∥y 1 −y 2 ∥,  −  g(α, β, z(β))dβ  
  dα


                    for all y 1 , x 2 , y 1 , y 2 ∈ Y, ϱ ∈ I.                 0  ν  Z  ϱ
                         1
                (4) g is L -Lipschitz continuous w.r.t. third           ≤   Mb        (δ 1 ∥y(α)
                    argument, that is, ∃ γ > 0, ∋,                        Γ(1 + ν)  0
              Z  ϱ                                                        − z(α)∥ + δ 2 γ∥y(α) − z(α)∥)dα.
                  ∥g(ϱ, α, y(α)) − g(ϱ, α, z(α))∥dα ≤ γ∥y(ϱ)
               0                                              That is,
                      −z(ϱ)∥, y, z ∈ P, (ϱ, α) ∈ △.                                   Mb  ν
                                                                     ∥y(ϱ) − z(ϱ)∥ ≤         (δ 1 + δ 2 γ)
            Using these hypotheses, we are able to build                            Γ(1 + ν)
            a control function explicitly to verify T-                     Z  ϱ
            controllability of (4)-(5). For showing this, we                   ∥y(α) − z(α)∥dα.
                                                                             0
            continue like this:
                                                              Hence by ‘Gronwall’s inequality’, we get
                The existence and uniqueness discussion for
            (4)-(5) may be easily proved with the help of Lip-               ∥y(ϱ) − z(ϱ)∥ = 0.
            schitz continuity of functions G and h, for each  Thus, y(ϱ) = z(ϱ), ∀ ϱ ∈ I and which concludes
            control v ∈ L 2 (I, V).                           the T-controllability of (4)-(5).
                Assume that z(ϱ) be the considered trajectory  Case-II: If the control appears nonlinearly
            in P. We extract admissible control v(ϱ) from     in (1)-(2):
            equation (4)-(5) by                                   In this case, we need the additional assump-
                                             ϱ                tions on B, h, and G to prove the trajectory con-
                                          Z
                  c D z(ϱ) − Az(ϱ) − G ϱ, z(ϱ),  g(ϱ, α, z(α))dα
                     ν
                     ϱ                                        trollability of (1)-(2) given as:
            v(ϱ) =                          0              .
                                     b(ϱ)                         Assumptions [II].
                                                           486
   109   110   111   112   113   114   115   116   117   118   119