Page 115 - IJOCTA-15-3
P. 115

Trajectory controllability of integro-differential system of fractional orders in Hilbert spaces
                (1) B, h, and G fulfill Caratheadory condi-                     y(0) = y 0 .              (7)
                    tions, that is, B(ϱ, ·) : V 7→ Y is continu-  We define B 1 (ϱ) by
                    ous for ϱ ∈ I and B(·, y) : I 7→ Y is mea-
                                                                            ν
                                                                         c
                                                                 B 1 (ϱ) = D z(ϱ) − Az(ϱ)
                    surable for y ∈ V and g(ϱ, α, ·) : Y 7→ Y               ϱ
                                                                                     Z  ϱ
                    is continuous ∀(ϱ, α) ∈ ∆ and g(·, ·, y) :
                                                                          − G ϱ, z(ϱ),    g(ϱ, α, z(α))dα
                    ∆ 7→ Y is measurable ∀y ∈ Y and G ful-
                                                                                       0
                    fills Caratheadory conditions identical to
                                                              for the given trajectory z(ϱ) ∈ P.
                    h.
                                                                  Along with this control, (6) can be wriiten as,
                (2) B, g, and G satisfy subsequent character-
                                                                c  ν              c  ν
                    istics:                                      D y(ϱ) =Ay(ϱ) + D z(ϱ) − Az(ϱ)
                                                                                     ϱ
                                                                   ϱ
                                                                                         ϱ
                                                                                      Z
              ∥B(ϱ, v)∥ Y ≤ l 0 (ϱ) + l 1 ∥v∥ V , ∀ v ∈ V, ϱ ∈ I,
                                                                          − G ϱ, z(ϱ),    g(ϱ, α, z(α))dα
                                             ∀ ϱ ∈ I, y ∈ Y,                            0
              ∥g(ϱ, α, y)∥ ≤ m 0 (ϱ) + m 1 ∥y∥ Y
                                                                                         ϱ
                                                                                      Z
            ∥G(ϱ, y, z)∥ Y ≤ n 0 (ϱ) + n 1 ∥y∥ Y + n 2 ∥z∥ Y .            + G ϱ, y(ϱ),    g(ϱ, α, y(α))dα ,
                                                                                        0
                (3) B fulfills monotonicity and coercivity con-     y(0) =y 0 .
                    ditions, i.e.,
                                                              Setting w(ϱ) = y(ϱ) − z(ϱ), one can get
            ⟨B(ϱ, v)−B(ϱ, w), v−w⟩ ≥ 0   ∀ v, w ∈ V, ϱ ∈ I
                                                                                              ϱ
                                                                                           Z
                                                                 ν
                    and                                       c D w(ϱ) =Aw(ϱ) + G ϱ, y(ϱ),     g(ϱ, α, y(α))dα
                                                                 ϱ
                               ⟨B(ϱ, v), v⟩                                                  0
                          lim             = ∞.                                      Z  ϱ
                        ∥u∥→∞     ∥v∥                                    − G ϱ, z(ϱ),    g(ϱ, α, z(α))dα ,
                                                                                       0
            Theorem        1.   Under    assumptions     [I]                                              (8)
            ((i),(iii),(iv)) and [II], the nonlinear system (1)-                w(0) = 0.                 (9)
            (2) is T-controllable.
                                                              From semigroup theory, the solution of (8)-(9)
            Proof. The existence and uniqueness of the non-   given by
            linear system (1)-(2) can be proved by employing          Z  ϱ      ν−1 ˆ
            Lipschitz continuity of G and g for each fixed v   w(ϱ) =     (ϱ − α)   S ν (ϱ − α)
                                                                        0
            and the solution fulfills                                           Z  α
                                  ϱ                                    G α, y(α),     g(α, β, y(β))dβ
                                Z
                                             S ν (ϱ − α)
                y(ϱ) =S ν (ϱ)y 0 +  (ϱ − α) ν−1 ˆ                                  0
                                 0                                                 Z  α
                      B(α, v(α))dα                                     − G α, z(α),    g(α, β, z(β))dβ  dα.
                           ϱ
                         Z                                                           0
                                      S ν (ϱ − α)
                       +    (ϱ − α) ν−1 ˆ                         Now taking norm on both sides and using
                          0
                                   α
                                Z                           Gronwall’s inequality just in the previous case,
                      G α, y(α),     g(α, β, y(β))dβ dα.      one can attain
                                  0
                                                                             ∥y(ϱ) − z(ϱ)∥ = 0.
            Assume that z ∈ P is the given trajectory with
            z(0) = y 0 . Our duty is to check the control v   Therefore, y(ϱ) = z(ϱ), ∀ ϱ ∈ I.     Therefore,
            fulfilling                                        the mild solution of the given system equals the
                                                              prescribed trajectory z(ϱ), when the control u is
                                Z  ϱ
                                             S ν (ϱ − α)
                z(ϱ) =S ν (ϱ)y 0 +  (ϱ − α) ν−1 ˆ             given by B 1 (ϱ) = B(ϱ, v(ϱ)). Hence to prove the
                                 0                            trajectory controllability, it is enough to extract
                      B(α, v(α))dα                            v(ϱ) from B 1 (ϱ). For extracting v(ϱ), we define
                         Z  ϱ                                 N : L 2 (I, V) → L 2 (I, Y) by
                       +    (ϱ − α) ν−1 ˆ
                                      S ν (ϱ − α)
                          0                                                (Nv)(ϱ) = B(ϱ, v(ϱ)).         (10)

                                 Z  α
                      G α, z(α),     g(α, β, z(β))dβ dα.      By referring to the assumption [II(i)-(ii)], we ob-
                                  0                           serve that the operator N is well-defined, contin-
            To show this, we put B 1 (ϱ) = B(ϱ, v(ϱ)) in (1)-  uous, and bounded. Using the assumption[II(iii)],
            (2), we get                                       we can say that N is monotone and coercive.
              c  ν                                            A hemi-continuous monotone map is of the type
               D y(ϱ) = Ay(ϱ) + B 1 (ϱ)
                 ϱ
                                                              (M) [44]. Hence, by employing Theorem 3.6.9 of
                                     ϱ                                       44

                                   Z
                      + G ϱ, y(ϱ),    g(ϱ, α, y(α))dα , (6)   Joshi and Bose,   we can say that the nonlinear
                                    0                         map N is onto. Therefore, there exists a con-
                       ϱ ∈ I, ν ∈ (0, 1]                      trol u fulfilling (10). Also, since u ∈ L 2 (I, V),
                                                           487
   110   111   112   113   114   115   116   117   118   119   120