Page 119 - IJOCTA-15-3
P. 119
Trajectory controllability of integro-differential system of fractional orders in Hilbert spaces
10. George RK, Chalishajar DN, Nandakumaran 25. Vijayakumar V. Approximate controllability re-
AK. Exact controllability of the nonlinear third- sults for non-densely defined fractional neutral
order dispersion equation. J Math Anal Appl. differential inclusions with Hille-Yosida operators.
2007;332(2):1028-1044. Int J Control. 2019;92(9):2210-2222.
11. Nandakumaran AK, George RK. Partial ex- 26. Vijayakumar V. Approximate controllability for
act controllability of a non-linear system. a class of second-order stochastic evolution in-
Revista Matemat Univers Complut Madrid clusions of Clarke’s subdifferential type. Result
1995;8(N1):181-196. Math. 2018a; 73(1):42.
12. Miller KS, Ross B. An Introduction to the Frac- 27. Vijayakumar V. Approximate controllability re-
tional Calculus and Fractional Differential Equa- sults for impulsive neutral differential inclusions
tions, A Wiley-Interscience Publication. New of Sobolev-type with infinite delay. Int J Control.
York: Wiley; 1993. 2018b;91(10): 2366-2386.
13. Cardetti F, Gordina M. A note on local control- 28. Matar M. Controllability of fractional semilinear
lability on Lie groups. Syst Control Lett. 2008; mixed Volterra-Fredholm integrodifferential equa-
57(12):978-979. tions with nonlocal conditions. Int J Math Anal.
14. Muslim M, Kumar A. Controllability of frac- 2010;4(23):1105-1116.
tional differential equation of order α ∈ (1, 2] 29. Wang J, Zhou Y. A class of fractional evolution
with non-instantaneous impulses. Asian J Con- equations and optimal controls. Nonlinear Anal
trol. 2018;20(2):935-942. Real World Appl. 2011;12(1):262-272.
15. Shukla A, Arora U, Sukavanam N. Approximate 30. Zhou Y, Jiao F. Existence of mild solutions for
controllability of retarded semilinear stochastic fractional neutral evolution equations. Comput
system with non local conditions. J Appl Math Math Applicat. 2010;59(3):1063-1077.
Comput. 2015; 49:513-527. 31. Kumar S, Sukavanam N. Approximate controlla-
16. Shukla A, Sukavanam N, Pandey DN, Arora U. bility of fractional order semilinear systems with
Approximate controllability of second-order semi- bounded delay. J Differ Equat. 2012;252(11):6163-
linear control system. Circ Syst Signal Process. 6174.
2016;35:3339-3354. 32. Sukavanam N, Kumar S. Approximate controlla-
17. Wang J, Wei W, Yang Y. Fractional nonlocal in- bility of fractional order semilinear delay systems.
tegrodifferential equations and its optimal control J Optimiz Theor Applicat. 2011;151:373-384.
in Banach spaces. J Korean Soc Ind Appl Math. 33. Kexue L, Jigen P, Jinghuai G. (2013). Control-
2010;14(2):79-91. lability of nonlocal fractional differential systems
18. Jajarmi A, Baleanu D. On the fractional optimal of order α ∈ (1, 2] in Banach spaces. Rep Math
control problems with a general derivative opera- Phys. 2013;71(1):33-43.
tor. Asian J Control. 2021;23(2): 1062-1071. 34. Arora S, Nandakumaran A. Controllability prob-
19. Kumar V, Malik M. Total controllability and lems of a neutral integro-differential equa-
observability for dynamic systems with non- tion with memory. arXiv preprint; 2024.
instantaneous impulses on time scales. Asian J arXiv:2407.07886.
Control. 2021;23(2):847-859. 35. Jalisraj A, Udhayakumar R. Existence results and
20. Liu Z, Li X. On the exact controllability of im- trajectory controllability of conformable Hilfer
pulsive fractional semilinear functional differen- fractional neutral stochastic integro-differential
tial inclusions. Asian J Control. 2015;17(5):1857- equations. Contemp Math. 2024;5(4):5496-5517.
1865. 36. Shukla A, Sukavanam N, Pandey DN. Approxi-
21. Dineshkumar C, Udhayakumar R, Vijayakumar mate controllability of semilinear fractional con-
V, Nisar KS, Shukla A. A note concerning to trol systems of order α ∈ (1, 2] with infinite delay.
approximate controllability of Atangana-Baleanu Mediterranean J Math. 2016;13:2539-2550.
fractional neutral stochastic systems with infinite 37. Chalishajar D, Chalishajar H. Trajectory con-
delay. Chaos Solit Fract. 2022;157: 111916. trollability of second order nonlinear integro-
22. Mahmudov NI, Udhayakumar R, Vijayakumar differential system: an analytical and a numerical
V. On the approximate controllability of second- estimation. Differ Equat Dyn Syst. 2015;23:467-
order evolution hemivariational inequalities. Re- 481.
sults Math. 2020;75: 1-19. 38. Chalishajar DN, George RK, Nandakumaran AK,
23. Mahmudov NI, Murugesu R, Ravichandran C, Vi- Acharya FS. Trajectory controllability of nonlin-
jayakumar V. Approximate controllability results ear integro-differential system. J Franklin Instit.
for fractional semilinear integro-differential inclu- 2010;347(7):1065-1075.
sions in Hilbert spaces. Results Math. 2017;71:45- 39. Hariharan R, Udhayakumar R. Approximate con-
61. trollability for Sobolev-type Fuzzy Hilfer frac-
24. Shukla A, Vijayakumar V, Nisar KS. A new ex- tional neutral integro-differential inclusion with
ploration on the existence and approximate con- Clarke subdifferential type. Qual Theor Dyn Syst.
trollability for fractional semilinear impulsive con- 2025;24(1):53.
trol systems of order r ∈ (1, 2). Chaos Solit Fract. 40. Kumar S, Tajinder. Existence of solution and
2022;154:111615. optimal control results in coupled wave system
491

