Page 124 - IJOCTA-15-3
P. 124

Amol D. Khandagale et al. / IJOCTA, Vol.15, No.3, pp.493-502 (2025)
                                                                                κ
            Theorem 1. ( [25, 33]) Let K ⊂ C 1−κ (J , R)          By applying D + to either sides of (7), it can
                                                                                p
            be closed, convex, and bounded in nature. Let     be deduced from Lemma 1, Lemma 6, and Defi-
            the operators ∆ : C 1−κ (J , R) → C 1−κ (J , R) and  nition 2 that
            Ω : K → C 1−κ (J , R) satisfying:                      κ                        τ(1−σ)
                                                                 D + [φ (s) − f (s, φ (s))] = D +  z (s) .  (8)
                                                                   p                        p
                (1) ∆ is D-contraction of nonlinear type,
                                                                                           κ
                                                              From (8), and the hypothesis D + [φ − f (·, φ (·))] ∈
                (2) Ω is completely continuous and                                         p
                (3) u = ∆u + Ωw ⇒ u ∈ K for all w ∈ K.        C 1−κ [a, b], we have
                                                                     1−τ(1−σ)      τ(1−σ)
            Then, the mapping ∆ + Ω owns a fixed point in         DI +       z = D +    z ∈ C 1−κ [a, b] .  (9)
                                                                     p             p
            K.
                                                              Also, since z ∈ C 1−κ [a, b], by Lemma 3,
            Lemma 9. Let a function f : J × R → R                          1−τ(1−σ)
                                                                          I +      z ∈ C 1−κ [a, b] .    (10)
                                                                           p
            such that, for any φ ∈ C 1−κ [p, q], f (· , φ (·)) ∈
            C 1−κ [p, q]. Then, φ ∈ C 1−κ [p, q] is a solution of  It follows from equations (9) and (10) that
            fractional IVP                                                 1−τ(1−σ) z ∈ C 1
                                                                          I +           1−κ  [a, b] .
                                                                           p
                σ,τ
               D + [φ (s) − f (s, φ (s))] = z (s) ,  s ∈ J ,
                p                                                           1−τ(1−σ)
                                                        (4)   Thus, z and I +       z verify the conditions of
                                                                            p
             1−κ
            I + [φ (s) − f (s, φ (s))] p +   = φ 0 , κ = σ+τ−στ,  Lemma 4.
             p                                                                     1−τ(1−σ)
                                                        (5)       Next, applying I +       to either sides of
                                                                                  p
            if and only if φ (s) satisfies the following VIE  Equation (8), and using Def. 3, and Lemma 4,
                                                              it implies that
                                 κ−1
                        φ 0 (s − p)
                                                                  σ,τ
                φ (s) =              + f (s, φ (s))             D + [φ (s) − f (s, φ (s))] = z (s)
                            Γ (κ)                                 p
                                                                        h             i
                                s                                         1−τ(1−σ)       +
                            1  Z         σ−1                             I +     z (s) (p )       τ(1−σ)−1
                                                                          p
                       +          (s − w)   z (w) dw.   (6)          −                      (s − p)       .
                          Γ (σ)                                             Γ (τ (1 − σ))
                               p                                                                         (11)
            Proof. Let φ be a solution of (4)–(5). Conse-         Since, 1 − κ < 1 − τ (1 − σ), using Lemma 5,
            quently, by Lemma 4, we obtain                    we get
                                                                         h  1−τ(1−σ)   i
             σ
                 σ,τ
            I +D + [φ (s) − f (s, φ (s))] = φ (s) − f (s, φ (s))          I +      z (s)  p +  = 0.
             p   p                                                         p
                        1−κ
                                               +
                       I + [φ (s) − f (s, φ (s))](p )         Hence, (11) reduces to
                    −   p                         (s − p) κ−1     σ,τ
                                  Γ (κ)                          D + [φ (s) − f (s, φ (s))] = z (s) ,  s ∈ J .
                                                                  p
                        σ
                    = I +z (s) .                                  Now, in order to show that equation (5) also
                        p
                                                                            1−κ
            Then,                                             holds, apply I +  to either sides of (7), then by
                                                                            p
                                   σ
              φ (s) − f (s, φ (s)) = I +z (s)                 means of Lemma 1 and Lemma 2, we get
                                   p                           1−κ              1−κ              1−κ σ
                                              +
                      1−κ
                     I + [φ (s) − f (s, φ (s))](p )           I + φ (s) = φ 0 + I + f (s, φ (s)) + I + I +z (s) .
                                                               p
                                                                                p
                                                                                                     p
                                                                                                 p
                   +  p                         (s − p) κ−1
                                Γ (κ)                             Since, 1 − κ < 1 − τ (1 − σ) it follows from
                                        κ−1                   Lemma 5, when taking the limit as s → p +
                               φ 0 (s − p)
                      σ
                   = I +z (s) +             .                       I + [φ (s) − f (s, φ (s))] p +    = φ 0 .
                                                                      1−κ
                      p
                                   Γ (κ)                             p
            So,                                               This completes the proof.                    □
                     φ 0 (s − p) κ−1
                                                  σ
             φ (s) =              + f (s, φ (s)) + I +z (s)
                                                  p
                         Γ (κ)                                3. Main result
                                                        (7)   Taking into account the following theories, we can
                     φ 0 (s − p) κ−1                          demonstrate the main result:
                   =              + f (s, φ (s))
                         Γ (κ)                                     Q1: Following weak contraction condition
                              s                                      holds for the function f (s, ·)
                         1  Z         σ−1
                     +         (s − w)   z (w) dw,  s ∈ J .          |f (s, v) − f (s, w)| ≤ ψ D (|v − w|) ,
                       Γ (σ)
                             p                                       for all s ∈ J and v, w ∈ R, where ψ D (s)
            Thus, Equation (6) holds. Now, to demonstrate            is a D−function.
            the sufficiency. Let φ ∈ C κ  [p, q] satisfy Equa-     Q2: For every s ∈ J and v ∈ R, there
                                      1−κ
            tion (6), which can be expressed as (7).                 is a continuous function ξ ∈ C 1−κ (J , R),
                                                           496
   119   120   121   122   123   124   125   126   127   128   129