Page 126 - IJOCTA-15-3
P. 126

Amol D. Khandagale et al. / IJOCTA, Vol.15, No.3, pp.493-502 (2025)
                   1−κ                                              1−κ
              (s − p)  Ωz (s)                                  (s − p)  φ (s)
                           s                                       |φ 0 |
                (s − p) 1−κ  Z      σ−1      κ−1                ≤       + (s − p) 1−κ  |f (s, φ (s)) − f (s, 0)|
             ≤               (s − w)   (s − p)   ∥ξ∥     ds        Γ (κ)
                  Γ (σ)                             C 1−κ
                          p                                       + (s − p) 1−κ  |f (s, 0)|
                      σ
                (q − p) β(κ, σ)                                                 s
             ≤                 ∥ξ∥    ,   ∀ s ∈ J .                   (s − p) 1−κ  Z
                    Γ (σ)         C 1−κ                           +              (s − w) σ−1 g (w, z (w)) dw
                                                                       Γ (σ)
            Taking maximum over s, we get                                      p
                                     σ
                              (q − p) β(κ, σ)                      |φ 0 |
                  ∥Ωz∥      ≤                ∥ξ∥     .          ≤       + (q − p) 1−κ ψ D ∥φ∥     + Λ
                       C 1−κ       Γ (σ)        C 1−κ              Γ (κ)                    C 1−κ
                                                                           σ
            This proves the uniform boundedness of the op-           (q − p) β(κ, σ)
            erator Ω on K. Let s 1 , s 2 ∈ J with s 1 < s 2 . For  +     Γ (σ)      ∥ξ∥ C 1−κ
            any z ∈ K, one has                                     |φ 0 |
                                                                ≤       + (q − p) 1−κ ψ D (η) + Λ
                                                                   Γ (κ)
                                                                           σ
                                                                     (q − p) β(κ, σ)
                                                                  +                 ∥ξ∥
                     1−κ                 1−κ
               (s 1 − p)  Ωz (s 1 ) − (s 2 − p)  Ωz (s 2 )               Γ (σ)         C 1−κ

                                                                  |φ 0 |
                              s 1
                        1−κ  Z                                                  1−κ
                  (s 1 − p)                                    ≤       + (q − p)   η + Λ
              =               (s 1 − w) σ−1 g (w, z (w)) dw       Γ (κ)
                    Γ (σ)                                                  σ

                             p
                                                                    (q − p) β(κ, σ)
                                                                  +                 ∥ξ∥    .
                                                                                      C 1−κ
                              s 2                                       Γ (σ)
                              Z
                  (s 2 − p) 1−κ         σ−1
                −               (s 2 − w)  g (w, z (w)) dw
                     Γ (σ)
                              p                              Applying maximum over s, we get
                 ∥ξ∥    β(κ, σ)                                               |φ 0 |        1−κ
              ≤     C 1−κ      (s 1 − p) 1−κ (s 1 − p) σ+κ−1       ∥φ∥     ≤       + (q − p)   η + Λ

                     Γ (σ)                                             C 1−κ   Γ (κ)
                                                                                       σ
                                                                                (q − p) β(κ, σ)
                −(s 2 − p) 1−κ (s 2 − p) σ+κ−1                                                ∥ξ∥
                                                                             +
                                                                                     Γ (σ)         C 1−κ
                 ∥ξ∥    β(κ, σ)
                                                   σ
                                       σ
              ≤     C 1−κ      |(s 1 − p) − (s 2 − p) | .                   ≤ η.
                     Γ (σ)
                                                              Hence, φ ∈ K. Thus, all the three assumptions of
            Thus, there exists a ε > 0, for some η such that  the Theorem 1 are hold, which implies that there

                |s 2 − s 1 | ≤ ε ⇒   (s 1 − p) 1−κ Ωz (s 1 )  exists φ ∈ K such that ∆φ + Ωφ = φ. Thus, the
                                                              operator ∆+Ω has a fixed point in K. Hence, the

                               −(s 2 − p) 1−κ Ωz (s 2 ) ≤ η,

                                                              IVP (1)–(2) owns a solution in C 1−κ (J , R).  □
            for all s 2 , s 1 ∈ J and z ∈ K. This proves the
            equicontinuity of ΩK in C 1−κ (J , R) and hence,  Remark 1. For τ = 1 the IVP (1)–(2) reduces
            by Arzela–Ascoli theorem, it is compact.          to a problem with the fractional derivative opera-
                                                              tor of Caputo type. Hence, the results obtained in
                                                              the Theorem 2 coincide with the results published
            Step III: There exists φ ∈ K such that φ =           32,33
                                                              in.
            ∆φ + Ωz for all z ∈ K.
            Let φ ∈ C 1−κ (J , R) and z ∈ K, such that φ =    4. Application
            ∆φ + Ωz. Using Hypothesis (Q1), we can write
                                                              Consider the following IVP:
                     1−κ
               (s − p)  φ (s)
                                                                1 1                           1
                                                                 ,
                                                                2 2
                       1−κ                                  D + [φ (s) − ln(1 + |φ(s)|)] =      sin(|φ(s)|),
               = (s − p)    (∆φ (s) + Ωz (s))                  0                           s + 1
                                                                                             2

                       1−κ               1−κ                                                         (18)
               ≤ (s − p)   ∆φ (s) + (s − p)     Ωz (s)



                                                                                                    1
                  |φ 0 |                                                               s ∈ J = (0, ],
               ≤       + (s − p) 1−κ f (s, φ (s))                                                  2

                 Γ (κ)
                                                                   1−  3
                                                                   4                        +
                               s                                  I + [φ (s) − ln(1 + |φ(s)|)] (0 ) = 2,  (19)
                         1−κ  Z                                  0
                    (s − p)
                                                                               1
                                                                                     3
                                                                                                 1
                                                                        1
                 +              (s − w) σ−1 g (w, z (w)) dw   Here, σ = , τ = , κ = , p = 0, q = , φ 0 = 2,
                      Γ (σ)
                                                                      2      2     4           2

                              p                                         f (s, φ (s)) = ln(1 + |φ(s)|),
                                                           498
   121   122   123   124   125   126   127   128   129   130   131