Page 123 - IJOCTA-15-3
P. 123

Investigate the solution of an initial Hilfer fractional value problem
            functions ϕ as                                    and
                                                                       n                                o
                                                                 κ
                                                                                         κ
                C 1−κ [p, q] = {ϕ (u) : [p, q] → R|             C 1−κ  = ϕ ∈ C 1−κ [p, q] , D +ϕ ∈ C 1−κ [p, q] .
                                                                                         p
                                                   o
                                  1−κ
                            (u − p)  ϕ (u) ∈ C [p, q] ,  (3)      It is obvious that
                                                                          C κ  [p, q] ⊂ C σ,τ  [p, q] .
            where [p, q] is the finite interval.                           1−κ         1−κ
                Obviously, C 1−κ [p, q] is the weighted Banach
                                                              Lemma 6. ( [3, 21]) Let σ, τ > 0 and κ =
            space with the norm                               σ + τ − στ. If f ∈ C κ  , then
                                
              
                                 1−κ
                                                                                           σ,τ
                                                                            κ
                     ∥ϕ∥     = 
(u − p) 1−κ ϕ (u)
 .                       I +D +f = I +D + f,
                                                                                κ
                                                                                        σ


                         C 1−κ                                              p   p      p   p
                                                C
            At the same time, we define a Banach space                       σ  σ       τ(1−σ) f.
                                                                           D +I +f = D +
                                                                             p  p       p
                        n                               o
              m
             C [p, q] := Θ ∈ C m−1  [p, q] : Θ (m)  ∈ C κ [p, q] ,
                                                                                                  1
              κ                                               Lemma 7. ( [3, 21]) Let h ∈ L [p, q] and
            with the norm                                       τ(1−σ) h ∈ L [p, q] exists, then
                                                                           1
                                                              D +
                                                                p
                       m−1

                       X                                                 σ,τ σ      τ(1−σ)  τ(1−σ)
                                           
 ,
                                
 + 
Θ
              ∥Θ∥ m =      
Θ (k)
   
  (m)
       m ∈ N.               D + I +h = I +    D +    h.

                 C κ                                                     p   p      p       p
                                 C          C κ
                       k=0
                                                              Lemma 8. ( [14, 21]). Let a real-valued func-
                   0
            Also, C [p, q] := C κ [p, q] .                    tion ϕ defined on (p, q] × R be such that, for any
                   κ
            Lemma 1. ( [3, 21]) If σ > 0 and τ > 0, there     φ ∈ C 1−κ [p, q], ϕ (· , φ (·)) ∈ C 1−κ [p, q]. Then
                                                                   κ
            exists                                            φ ∈ C 1−κ  [p, q] is a solution of IVP:
                                                                σ,τ
               h         τ−1 i        Γ (τ)        τ+σ−1      D + φ (s) = ϕ (s, φ (s)) ,  0 < σ < 1, 0 ≤ τ ≤ 1,
                 σ
                I +(t − p)    (u) =          (u − p)            p
                 p                  Γ (τ + σ)
                                                                  1−κ
                                                                 I + φ p +  = φ 0 ,        κ = σ + τ − στ,
            and                                                   p
                h             i                               iff φ verifies the next integral equation:
                   σ
                 D +(t − p) σ−1  (u) = 0,     0 < σ < 1.
                   p                                                               κ−1
                                                                          φ 0 (s − p)      1
                                                                  φ (s) =              +
            Lemma 2. ( [3, 21]) If σ > 0, τ > 0, and                          Γ (κ)      Γ (σ)
                   1
            ϕ ∈ L (p, q), for u ∈ [p, q], there exist the fol-                s
                                                                             Z
            lowing properties,                                              ·  (s − w) σ−1 ϕ (w, u (w)) dw.

                                        σ+τ
                        σ
                           τ
                       I +I +ϕ (u) = I + ϕ (u)                               p
                           p
                        p
                                        p
            and                                                   Now, the following are some of the concepts,

                               σ
                           σ
                          D +I +ϕ (u) = ϕ (u) .               which we will be employed in the main result.
                           p   p
                                                                  Let C (J × R, R) represents the category of
                In particular, if ϕ ∈ C κ [p, q] or ϕ ∈ C [p, q] ,  continuous functions θ : J × R → R and the kind
            then above equalities hold at each u ∈ (p, q] or  of mappings ϕ : J × R → R, where the map
            u ∈ [p, q], respectively.                            (1) s 7→ ϕ (s, w) is measurable ∀ w ∈ R,
                                                                 (2) s 7→ ϕ (s, w) is continuous ∀ w ∈ R.
            Lemma 3. ( [3, 21]) Let σ > 0 and 0 ≤ κ < 1.
                   σ
            Then I + is bounded from C κ [p, q] into C κ [p, q].  Moreover, the space C (J × R, R) is referred to be
                   p
                                                              the mappings of Carath´eodory type on J × R,
            Lemma 4. ( [3, 21]) Let σ > 0 and 0 ≤ κ < 1.      which are Lebesgue integrable functions when
                                1−σ
                                        1
            If ϕ ∈ C κ [p, q] and I + ϕ ∈ C [p, q], then      bounded by a Lebesgue integrable function on J .
                               p        κ
                                      1−σ
                                     I + ϕ (p)                Definition 4. ( [22–24]) A function Υ : R + →
                σ
                    σ
               I +D +ϕ (u) = ϕ (u) −  p Γ (σ)  (u − p) σ−1 ,  R + which is upper semi-continuous and non-
                    p
                p
                                                              decreasing in nature is said to be a D-function
            for all u ∈ (p, q] .
                                                              if Υ (0) = 0. Moreover, D represents the category
            Lemma 5. ( [3, 21]) If 0 ≤ κ < 1 and ϕ ∈          of each D-functions on R + .
            C κ [p, q], then
                                                              Definition 5. ( [22–24]) For an operator ∆ :
                                σ
               σ
              I +ϕ (p) := lim I +ϕ (u) = 0,    0 ≤ κ < σ.     C 1−κ (J , R) → C 1−κ (J , R), if there is a D-
               p               p
                         u→p +
                                                              function Υ ∆ ∈ D, where
                Now, we present the following weighted spaces          ∥∆v − ∆w∥ ≤ Υ ∆ (∥v − w∥) ,
            which are required in our main result.
                                                              for all v, w ∈ C 1−κ (J , R), where 0 < Υ ∆ (α) < α
                                                              for all α > 0, then the operator ∆ is referred as a
                      n                                o
                                        σ,τ
               C σ,τ  = ϕ ∈ C 1−κ [p, q] , D + ϕ ∈ C 1−κ [p, q]
                1−κ                     p                     nonlinear D-contraction on C 1−κ (J , R).
                                                           495
   118   119   120   121   122   123   124   125   126   127   128