Page 128 - IJOCTA-15-3
P. 128

Amol D. Khandagale et al. / IJOCTA, Vol.15, No.3, pp.493-502 (2025)

              9. Bagwan A, & Pachpatte D. Existence and sta-  23. Dhage BC. Random fixed point theorems in Ba-
                bility of nonlocal initial value problems involving  nach algebras with applications to random in-
                generalized Katugampola derivative. Kragujevac    tegral equations. Tamkang J Math. 2003;34:29-
                J Math., 2022;46(3):443-460.                      43.
             10. Bagwan A, Pachpatte D. Existence and unique-  24. Dhage BC. A fixed point theorem in Banach alge-
                ness results for implicit fractional differential  bras with applications to functional integral equa-
                equations involving generalized Katugampola de-   tions. Kyungpook Math J. 2004;44:145-155.
                rivative. South East Asian JMath Mathemat Sci.  25. Dhage BC. Some variants of two basic hybrid
                2021;17(1):77-94.                                 fixed point theorems of Krasnoselskii and Dhage
             11. Bagwan A, Pachpatte D. On the existence results  with applications. Nonlinear Stud. 2018;25:559-
                of a coupled system of generalized Katugampola    573.
                fractional differential equations. Prog Fract Differ  26. Mohan RM, Vijayakumar V, Veluvolu KC, Shukla
                Appl., 2023;9(2):257-269.                         A, Nisar KS. Existence and optimal control re-
                                              ˇ
             12. Bagwan A, Pachpatte D, Kisel´ak J, Stehl´ık      sults for Caputo fractional delay Clark’s subdif-
                M. On existence results of boundary value         ferential inclusions of order r ∈ (1, 2) with sec-
                problems   of  Caputo   fractional  difference    torial operators. Optimal Control Appl Methods.
                equations for weak-form efficient market hy-      2024;45(4):1832-1850. doi: 10.1002/oca.3125
                pothesis. Stoch Anal Appl., 2025;43(1):30-47.  27. Mohan RM, Vijayakumar V, Shukla A, Nisar
                https://doi.org/10.1080/07362994.2024.2424343     KS, Rezapour S. Investigating existence results
             13. Benchohra M, Lazreg JE. Existence and Ulam       for fractional evolution inclusions with order
                stability for nonlinear implicit fractional dif-  r ∈ (1, 2) in Banach space. Int J Nonlin-
                ferential  equations  with  Hadamard  deriva-     ear Sci Numer Simulat. 2023;24(6): 2047-2060.
                tive. Stud Univ Babes-Bolyai Math. 2017;62:27-    https://doi.org/10.1515/ijnsns-2021-0368
                38.                                           28. Mohan RM, Vijayakumar V, Veluvolu KC.
             14. Furati KM, Kassim MD, Tatar Ne. Existence        Higher-order  Caputo  fractional  integro  dif-
                and uniqueness for a problem involving Hil-       ferential  inclusions  of  Volterra–Fredholm
                fer fractional derivative. Comput Math Appl.,     type with impulses and infinite delay:  ex-
                2012;64:1616-1626.                                istence results. J Appl Math Comput. 2025.
             15. Hilfer R, Luckho Y, Tomovski Z. Operational      https://doi.org/10.1007/s12190-025-02412-4
                method for the solution of fractional differential  29. Mohan RM, Vijayakumar V, Veluvolu KC.
                equations with generalized Riemann–Liouville      Improved   order  in  Hilfer  fractional  dif-
                fractional derivatives. Fract Calc Appl Anal.     ferential  systems:  solvability  and  optimal
                2009;12:289-318.                                  control problem for hemivariational inequal-
             16. Furati KM, Kassim MD, Tatar NE-. Non-            ities. Chaos Solit Fractals  2024;188:115558.
                existence of global solutions for differential equa-  https://doi.org/10.1016/j.chaos.2024.115558
                tions involving Hilfer fractional derivative. Elec-  30. Dhage C, Lakshmikantham V. Basic results on
                tron J Differ Equat.2013;2013:1-10.               hybrid differential equations. Nonlinear Anal Real
             17. Khandagake AD, Hamoud AA, Ghadle KP. Exis-       World Appl. 2010;4:414-424.
                tence of solutions for fractional integro-differential  31. Dhage BC, Jadhav NS. Basic results in the the-
                equations involving the Caputo type Atangana–     ory of hybrid differential equations with linear
                Baleanu derivative. Turkish J Comput Math         perturbations of second type. Tamkang J Math.,
                Educ. 2021;12(14):613-620.                        2013;44:171-186.
             18. Khandagake AD, Hamoud AA, Ghadle KP. New     32. Lu H, Sun S, Yang D, Teng H. Theory of
                results on nonlocal fractional Volterra–Fredholm  fractional hybrid differential equations with lin-
                integro-differential equations. J Math Comput     ear perturbations of second type. Bound Value
                Sci. 2021;11(5): 6193-6204.                       Probl.2013;23:1-16.
             19. Khandagake AD, Hamoud AA, Shah R, Gha-       33. Akhadkulov H, Alsharari F, Ying TY. Applica-
                dle KP. Some new results on Hadamard neutral      tions of Krasnoselskii–Dhage type fixed-point the-
                fractional nonlinear Volterra–Fredholm integro-   orems to fractional hybrid differential equations.
                differential equations. Discontin Nonlinear Com-  Tamkang J Math. 2021;52(2):281-292.
                plex. 2023;12(4):893-903.                     34. Kiataramkul C, Ntouyas SK, Tariboon J.
             20. Subashini R, Jothimani K, Saranya S, Ravichan-   Existence results for ψ-Hilfer fractional integro-
                dran C. On the results of Hilfer fractional deriva-  differential hybrid boundary Value problems
                tives with nonlocal conditions. Int J Pure Appl   for differential equations and inclusions. Adv
                Math. 2018;118:277-289.                           Math   Phys.  2021:12.Article  Id:  9044313.
             21. Wang J, Zhang Y. Nonlocal initial value problems  https://doi.org/10.1155/2021/9044313
                for differential equations with Hilfer fractional de-  35. Sene N, Ndiaye A. Existence and uniqueness
                rivative. Appl Math Comput. 2015;266:850-859.     study for partial neutral functional fractional dif-
             22. Dhage BC. Remarks on two fixed point theorems    ferential equation under Caputo derivative. Int J
                involving the sum and product of two operators.   Optim Control Theor Appl IJOCTA., 2024;14(3):
                Comput Math Appl. 2003;46:1779-1785.              208-219. https://doi.org/10.11121/ijocta.1464
                                                           500
   123   124   125   126   127   128   129   130   131   132   133