Page 128 - IJOCTA-15-3
P. 128
Amol D. Khandagale et al. / IJOCTA, Vol.15, No.3, pp.493-502 (2025)
9. Bagwan A, & Pachpatte D. Existence and sta- 23. Dhage BC. Random fixed point theorems in Ba-
bility of nonlocal initial value problems involving nach algebras with applications to random in-
generalized Katugampola derivative. Kragujevac tegral equations. Tamkang J Math. 2003;34:29-
J Math., 2022;46(3):443-460. 43.
10. Bagwan A, Pachpatte D. Existence and unique- 24. Dhage BC. A fixed point theorem in Banach alge-
ness results for implicit fractional differential bras with applications to functional integral equa-
equations involving generalized Katugampola de- tions. Kyungpook Math J. 2004;44:145-155.
rivative. South East Asian JMath Mathemat Sci. 25. Dhage BC. Some variants of two basic hybrid
2021;17(1):77-94. fixed point theorems of Krasnoselskii and Dhage
11. Bagwan A, Pachpatte D. On the existence results with applications. Nonlinear Stud. 2018;25:559-
of a coupled system of generalized Katugampola 573.
fractional differential equations. Prog Fract Differ 26. Mohan RM, Vijayakumar V, Veluvolu KC, Shukla
Appl., 2023;9(2):257-269. A, Nisar KS. Existence and optimal control re-
ˇ
12. Bagwan A, Pachpatte D, Kisel´ak J, Stehl´ık sults for Caputo fractional delay Clark’s subdif-
M. On existence results of boundary value ferential inclusions of order r ∈ (1, 2) with sec-
problems of Caputo fractional difference torial operators. Optimal Control Appl Methods.
equations for weak-form efficient market hy- 2024;45(4):1832-1850. doi: 10.1002/oca.3125
pothesis. Stoch Anal Appl., 2025;43(1):30-47. 27. Mohan RM, Vijayakumar V, Shukla A, Nisar
https://doi.org/10.1080/07362994.2024.2424343 KS, Rezapour S. Investigating existence results
13. Benchohra M, Lazreg JE. Existence and Ulam for fractional evolution inclusions with order
stability for nonlinear implicit fractional dif- r ∈ (1, 2) in Banach space. Int J Nonlin-
ferential equations with Hadamard deriva- ear Sci Numer Simulat. 2023;24(6): 2047-2060.
tive. Stud Univ Babes-Bolyai Math. 2017;62:27- https://doi.org/10.1515/ijnsns-2021-0368
38. 28. Mohan RM, Vijayakumar V, Veluvolu KC.
14. Furati KM, Kassim MD, Tatar Ne. Existence Higher-order Caputo fractional integro dif-
and uniqueness for a problem involving Hil- ferential inclusions of Volterra–Fredholm
fer fractional derivative. Comput Math Appl., type with impulses and infinite delay: ex-
2012;64:1616-1626. istence results. J Appl Math Comput. 2025.
15. Hilfer R, Luckho Y, Tomovski Z. Operational https://doi.org/10.1007/s12190-025-02412-4
method for the solution of fractional differential 29. Mohan RM, Vijayakumar V, Veluvolu KC.
equations with generalized Riemann–Liouville Improved order in Hilfer fractional dif-
fractional derivatives. Fract Calc Appl Anal. ferential systems: solvability and optimal
2009;12:289-318. control problem for hemivariational inequal-
16. Furati KM, Kassim MD, Tatar NE-. Non- ities. Chaos Solit Fractals 2024;188:115558.
existence of global solutions for differential equa- https://doi.org/10.1016/j.chaos.2024.115558
tions involving Hilfer fractional derivative. Elec- 30. Dhage C, Lakshmikantham V. Basic results on
tron J Differ Equat.2013;2013:1-10. hybrid differential equations. Nonlinear Anal Real
17. Khandagake AD, Hamoud AA, Ghadle KP. Exis- World Appl. 2010;4:414-424.
tence of solutions for fractional integro-differential 31. Dhage BC, Jadhav NS. Basic results in the the-
equations involving the Caputo type Atangana– ory of hybrid differential equations with linear
Baleanu derivative. Turkish J Comput Math perturbations of second type. Tamkang J Math.,
Educ. 2021;12(14):613-620. 2013;44:171-186.
18. Khandagake AD, Hamoud AA, Ghadle KP. New 32. Lu H, Sun S, Yang D, Teng H. Theory of
results on nonlocal fractional Volterra–Fredholm fractional hybrid differential equations with lin-
integro-differential equations. J Math Comput ear perturbations of second type. Bound Value
Sci. 2021;11(5): 6193-6204. Probl.2013;23:1-16.
19. Khandagake AD, Hamoud AA, Shah R, Gha- 33. Akhadkulov H, Alsharari F, Ying TY. Applica-
dle KP. Some new results on Hadamard neutral tions of Krasnoselskii–Dhage type fixed-point the-
fractional nonlinear Volterra–Fredholm integro- orems to fractional hybrid differential equations.
differential equations. Discontin Nonlinear Com- Tamkang J Math. 2021;52(2):281-292.
plex. 2023;12(4):893-903. 34. Kiataramkul C, Ntouyas SK, Tariboon J.
20. Subashini R, Jothimani K, Saranya S, Ravichan- Existence results for ψ-Hilfer fractional integro-
dran C. On the results of Hilfer fractional deriva- differential hybrid boundary Value problems
tives with nonlocal conditions. Int J Pure Appl for differential equations and inclusions. Adv
Math. 2018;118:277-289. Math Phys. 2021:12.Article Id: 9044313.
21. Wang J, Zhang Y. Nonlocal initial value problems https://doi.org/10.1155/2021/9044313
for differential equations with Hilfer fractional de- 35. Sene N, Ndiaye A. Existence and uniqueness
rivative. Appl Math Comput. 2015;266:850-859. study for partial neutral functional fractional dif-
22. Dhage BC. Remarks on two fixed point theorems ferential equation under Caputo derivative. Int J
involving the sum and product of two operators. Optim Control Theor Appl IJOCTA., 2024;14(3):
Comput Math Appl. 2003;46:1779-1785. 208-219. https://doi.org/10.11121/ijocta.1464
500

