Page 50 - ITPS-5-2
P. 50
44 INNOSC Theranostics and Pharmacological Sciences, 2022, Vol. 5, No. 2 Das et al.
[5] Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. [23] Li, M.; Ding, J.; Tao, Y.; Shi, B.; Chen, J.H. Polysaccharides for
Chitosan Derivatives and their Application in Biomedicine. Int. J. Biomedical Applications. Int. J. Polym. Sci., 2019, 2019, 7841836.
Mol. Sci., 2020, 21, 487. [24] Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.;
[6] Wei, L.; Mi, Y.; Zhang, J.; Li, Q.; Dong, F.; Guo, Z. Evaluation Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a
of Quaternary Ammonium Chitosan Derivatives Differing in the Visualization System for Exploratory Research and Analysis. J.
Length of Alkyl Side-chain: Synthesis and Antifungal Activity. Int. Comput. Chem., 2004, 25, 1605–12.
J. Biol. Macromol., 2019, 129, 1127–32. [25] Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and
[7] Panda, P.K.; Yang, J.M.; Chang, Y.H. Preparation and Accuracy of Docking with a New Scoring Function, Efficient
Characterization of Ferulic Acid-modified Water Soluble Chitosan Optimization, and Multithreading. J. Comput. Chem., 2010, 31,
and Poly (γ-glutamic Acid) Polyelectrolyte Films through Layer- 455–61.
by-layer Assembly Towards Protein Adsorption. Int. J. Biol. [26] Dhanasekaran, S.; Rameshthangam, P.; Venkatesan, S.; Singh, S.K.;
Macromol., 2021, 171, 457–64. Vijayan, S.R. In Vitro and in Silico Studies of Chitin and Chitosan
[8] Yang, J.M.; Panda, P.K.; Jie, C.J.; Dash, P.; Chang, Y.H. Poly Based Nanocarriers for Curcumin and Insulin Delivery. J. Polym.
(Vinyl Alcohol)/Chitosan/Sodium Alginate Composite Blended Environ., 2018, 26, 4095–113.
Membrane: Preparation, Characterization, and Water-induced [27] Gao, H.; Mei, S.; Zhao, J.; Zheng, K.; Liao, S. Study on the Binding
Shape Memory Phenomenon. Polym. Eng. Sci., 2022, 62, 1526–37. Mode of a Pyrrolotriazin Derivative with JAK2 by Docking and
[9] Panda, P.K.; Sadeghi, K.; Park, K.; Seo, J. Regeneration Approach MD Simulation. Mol. Simul., 2018, 45, 1–9.
to Enhance the Antimicrobial and Antioxidant Activities of Chitosan [28] Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A Contemporary View
for Biomedical Applications. Polymers (Basel), 2023, 15, 132. of Coronavirus Transcription. J. Virol., 2007, 81, 20–9.
[10] Manisha D.P.; Chawla, R.; Dutta, P.K. ‘Click’ Synthesized [29] Pi, M.; Kapoor, K.; Ye, R.; Nishimoto, S.K.; Smith, J.C.; Baudry, J.;
Calcium-chitosan-triazole Nanocomplex from CaC2 as an Efficient Quarles, L.D. Evidence for Osteocalcin Binding and Activation of
Drug Carrier, Antimicrobial and Antioxidant Polymer. Int. J. Biol. GPRC6A in β-cells. Endocrinology, 2016, 157, 1866–80.
Macromol., 2023, 240, 124290. [30] Ishihara, C.; Yoshimatsu, K.; Tsuji, M.; Arikawa, J.; Saiki, I.;
[11] Chen, Z.; Yao, X.; Liu, L.; Guan, J.; Liu, M.; Li, Z.; Yang, J.; Tokura, S.; Azuma, I. Anti-viral Activity of Sulfated Chitin
Huang, S.; Wu, J.; Tian, F.; Jing, M. Blood Coagulation Evaluation Derivatives Against Friend Murine Leukaemia and Herpes
of N-alkylated Chitosan. Carbohydr. Polym., 2017, 173, 259–68. Simplex Type-1 Viruses. Vaccine, 1993, 11, 670–4.
[12] He, X.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. The Improved [31] Malik, A.; Gupta, M.; Gupta, V.; Gogoi, H.; Bhatnagar, R. Novel
Antiviral Activities of Amino-modified Chitosan Derivatives on Application of Trimethyl Chitosan as an Adjuvant in Vaccine
Newcastle Virus. Drug Chem. Toxicol., 2019, 44, 355–40. Delivery. Int. J. Nanomedicine, 2018, 13, 7959–70.
[13] Mohammadi, E.; Daraei, H.; Ghanbari, R.; Athar, S.D.; [32] Tao, W.; Zheng, H.Q.; Fu, T.; He, Z.J.; Hong, Y. N-(2-hydroxy)
Zandsalimi, Y.; Ziaee, A.; Maleki, A.; Yetilmezsoy, K. Synthesis of Propyl-3-trimethylammonium Chitosan Chloride: An Immune-
Carboxylated Chitosan Modified with Ferromagnetic Nanoparticles enhancing Adjuvant for Hepatitis E Virus Recombinant Polypeptide
for Adsorptive Removal of Fluoride, Nitrate, and Phosphate Anions Vaccine in Mice. Hum. Vaccin. Immunother., 2017, 13, 1818–22.
from Aqueous Solutions. J. Mol. Liquids, 2019, 273, 116–24. [33] Loutfy, S.A.; Abdel-Salam, A.I.; Moatasim, Y.; Gomaa, M.R.;
[14] Benediktsdóttir, B.E.; Baldursson, Ó.; Másson, M. Challenges Fattah, N.F.A.; Emam, M.H.; Ali, F.; ElShehaby, H.A.; Ragab, E.A.;
in Evaluation of Chitosan and Trimethylated Chitosan (TMC) El-Din, H.M.A.; Mostafa, A.; Ali, M.A.; Kasry, A. Antiviral
as Mucosal Permeation Enhancers: From Synthesis to in Vitro Activity of Chitosan Nanoparticles Encapsulating Silymarin (SIL-
Application. J. Control Release, 2014, 173, 18–31. CNPS) against SARS-COV-2 (in Silico and in Vitro Study). RSC
[15] Cheah, W.Y.; Show, P.L.; Ng, I.S.; Lin, G.Y.; Chiu, C.Y.; Chang, Y.K. Adv., 2022, 12, 15775–86.
Antibacterial Activity of Quaternized Chitosan Modified Nanofiber [34] Zhuo, S.H.; Wu, J.J.; Zhao, L.; Li, W.H.; Zhao, Y.F.; Li, Y.M.
Membrane. Int. J. Biol. Macromol., 2019, 126, 569–77. A Chitosan-mediated Inhalable Nanovaccine Against SARS-
[16] Xue, H.; Hu, L.; Xiong, Y.; Zhu, X.; Wei, C.; Cao, F.; Zhou, W.; CoV-2. Nano Res., 2022, 15, 4191–200.
Sun, Y.; Endo, Y.; Liu, M.; Liu, Y.; Liu, J.; Abududilibaier, A.; [35] Pereira, P.F.S.; de Paula E Silva, A.C.A.; da Silva Pimentel, B.N.A.;
Chen, L.; Yan, C.; Mi, B.; Liu, G. Quaternized Chitosan-matrigel- Pinatti, I.M.; Simões, A.Z.; Vergani, C.E.; Barreto-Vieira, D.F.;
polyacrylamide Hydrogels as Wound Dressing for Wound Repair da Silva, M.A.N.; Miranda, M.D.; Monteiro, M.E.S.; Tucci, A.;
and Regeneration. Carbohydr. Polym., 2019, 226, 115302. Doñate-Buendía, C.; Mínguez-Vega, G.; Andrés, J.; Longo, E.
[17] Milewska, A.; Chi, Y.; Szczepanski, A.; Barreto-Duran, E.; Inactivation of SARS-CoV-2 by a Chitosan/α-Ag WO Composite
2
4
Dabrowska, A.; Botwina, P.; Obloza, M.; Liu, K.; Liu, D.; Generated by Femtosecond Laser Irradiation. Sci. Rep., 2022, 12,
Guo, X.; Ge, Y.; Li, J.; Cui, L.; Ochman, M.; Urlik, M.; 8118.
Rodziewicz-Motowidlo, S.; Zhu, F.; Szczubialka, K.; [36] Vörös-Horváth, B.; Živković, P.; Bánfai, K.; Bóvári-Biri, J.;
Nowakowska, M.; Pyrc, K. HTCC as a Polymeric Inhibitor of Pongrácz, J.; Bálint, G.; Pál, S.; Széchenyi, A. Preparation and
SARS-CoV-2 and MERS-CoV. J. Virol., 2021, 95, e01622–20. Characterization of ACE2 Receptor Inhibitor-loaded Chitosan
[18] Milewska, A.; Kaminski, K.; Ciejka, J.; Kosowicz, K.; Zeglen, S.; Hydrogels for Nasal Formulation to Reduce the Risk of COVID-19
Wojarski, J.; Nowakowska, M.; Szczubiałka, K.; Pyrc, K. HTCC: Viral Infection. ACS Omega, 2022, 7, 3240–53.
Broad Range Inhibitor of Coronavirus Entry. PLoS One, 2016, 11, [37] Ciejka, J.; Wolski, K.; Nowakowska, M.; Pyrc, K.; Szczubiałka, K.
e0156552. Biopolymeric Nano/Microspheres for Selective and Reversible
[19] Milewska, A.; Ciejka, J.; Kaminski, K.; Karewicz, A.; Bielska, D.; Adsorption of Coronaviruses. Mater. Sci. Eng. C Mater. Biol.
Zeglen, S.; Karolak, W.; Nowakowska, M.; Potempa, J.; Appl., 2017, 76, 735–42.
Bosch, B.J.; Pyrc, K.; Szczubialka, K. Novel Polymeric Inhibitors [38] Pramanik, A.; Jones, S.; Gao, Y.; Sweet, C.; Begum, S.; Shukla, M.K.;
of HCoV-NL63. Antiviral Res., 2013, 97, 112–21. Buchanan, J.P.; Moser, R.D.; Ray, P.C. Bio-conjugated Chitosan
[20] Chirkov, S.N. The Antiviral Activity of Chitosan (Review). Prikl. Wrapped CNT Based 3D Nanoporous Architecture for Separation
Biokhim. Mikrobiol., 2002, 38, 5–13. and Inactivation of Rotavirus and Shigella Waterborne Pathogens.
[21] Jones, D.T.; Taylor, W.R.; Thornton, J.M. The Rapid Generation of J. Mater. Chem. B, 2017, 5, 9522–31.
Mutation Data Matrices from Protein Sequences. Comput. Appl.
Biosci., 1992, 8, 275–82. Publisher's note
[22] Jena, A.B.; Samal, R.R.; Kumari, K.; Pradhan, J.; Chainy, G.B.N.;
Subudhi, U.; Pal, S.; Dandapat, J. The Benzene Metabolite AccScience Publishing remains neutral with regard
p-benzoquinone Inhibits the Catalytic Activity of Bovine Liver to jurisdictional claims in published maps and
Catalase: A Biophysical Study. Int. J. Biol. Macromol., 2021, 167,
871–80. institutional affiliations.
©2022 AccScience Publishing

