Page 56 - ITPS-7-2
P. 56
INNOSC Theranostics and
Pharmacological Sciences Cardiac metabolism in health and disease
enhancing the effectiveness of metabolic therapies for 5. Lehman JJ, Kelly DP. Transcriptional activation of energy
heart diseases. metabolic switches in the developing and hypertrophied
heart. Clin Exp Pharmacol Physiol. 2002;29(4):339-345.
Acknowledgments doi: 10.1046/j.1440-1681.2002.03655.x
ChatGPT 3.5 was utilized by the authors to verify and 6. Sack MN, Disch DL, Rockman HA, Kelly DP. A role for
rectify grammatical errors during the manuscript writing Sp and nuclear receptor transcription factors in a cardiac
process. After using this tool, the authors reviewed and hypertrophic growth program. Proc Natl Acad Sci U S A.
edited the content as needed and took full responsibility 1997;94(12):6438-6443.
for the content of the publication. In addition, the authors doi: 10.1073/pnas.94.12.6438
extend gratitude to Dr. Maria Love for her invaluable
editorial assistance. 7. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial
substrate metabolism in the normal and failing heart.
Funding Physiol Rev. 2005;85(3):1093-1129.
doi: 10.1152/physrev.00006.2004
None.
8. Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty
Conflict of interest acid oxidation alterations in heart failure, ischaemic heart
disease and diabetic cardiomyopathy. Br J Pharmacol.
The authors declare they have no competing interests.
2014;171(8):2080-2090.
Author contributions doi: 10.1111/bph.12475
Conceptualization: All authors 9. Liu Q, Docherty JC, Rendell JC, Clanachan AS,
Writing – original draft: All authors Lopaschuk GD. High levels of fatty acids delay the recovery
Writing – review & editing: All authors of intracellular pH and cardiac efficiency in post-ischemic
hearts by inhibiting glucose oxidation. J Am Coll Cardiol.
Ethics approval and consent to participate 2002;39(4):718-725.
Not applicable. doi: 10.1016/s0735-1097(01)01803-4
10. Randle PJ, England PJ, Denton RM. Control of the
Consent for publication tricarboxylate cycle and its interactions with glycolysis
Not applicable. during acetate utilization in rat heart. Biochem J.
1970;117(4):677-695.
Availability of data doi: 10.1042/bj1170677
Not applicable. 11. Randle PJ, Garland PB, Hales CN, Newsholme EA. The
glucose fatty-acid cycle. Its role in insulin sensitivity and
References the metabolic disturbances of diabetes mellitus. Lancet.
1963;1(7285):785-789.
1. Stanley WC, Chandler MP. Energy metabolism in the normal
and failing heart: Potential for therapeutic interventions. doi: 10.1016/s0140-6736(63)91500-9
Heart Fail Rev. 2002;7(2):115-130. 12. Tanajak P, Sa-Nguanmoo P, Wang X, et al. Fibroblast
doi: 10.1023/a:1015320423577 growth factor 21 (FGF21) therapy attenuates left ventricular
dysfunction and metabolic disturbance by improving FGF21
2. Taegtmeyer H. Energy metabolism of the heart: From sensitivity, cardiac mitochondrial redox homoeostasis and
basic concepts to clinical applications. Curr Probl Cardiol. structural changes in pre-diabetic rats. Acta Physiol (Oxf).
1994;19(2):59-113.
2016;217(4):287-299.
doi: 10.1016/0146-2806(94)90008-6
doi: 10.1111/apha.12698
3. Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the 13. Chen WJ, Diamant M, de Boer K, et al. Effects of exenatide
human heart. II. Studies on fat, ketone and amino acid on cardiac function, perfusion, and energetics in type 2
metabolism. Am J Med. 1954;16(4):504-515.
diabetic patients with cardiomyopathy: A randomized
doi: 10.1016/0002-9343(54)90365-4 controlled trial against insulin glargine. Cardiovasc Diabetol.
2017;16(1):67.
4. Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial
metabolism of free fatty acids. Studies with 14C-labeled doi: 10.1186/s12933-017-0549-z
substrates in humans. J Clin Invest. 1987;79(2):359-366.
14. Lincoff AM, Bhasin S, Flevaris P, et al. Cardiovascular
doi: 10.1172/JCI112820 safety of testosterone-replacement therapy. N Engl J Med.
Volume 7 Issue 2 (2024) 7 doi: 10.36922/itps.2302

