Page 67 - ITPS-7-3
P. 67

INNOSC Theranostics and
            Pharmacological Sciences                                  Designing miRNA ONTs for cardiometabolic pandemics



               studies. Biochem Pharmacol. 2021;189:114432.       the wnt-responsive transcription factor Tcf7.  Diabetes.
                                                                  2015;64(11):3659-3669.
               doi: 10.1016/j.bcp.2021.114432
                                                                  doi: 10.2337/db14-1924
            47.  Ambros V. The functions of animal microRNAs.  Nature.
               2004;431(7006):350-355.                         59.  Hu Y, Liu HX, Jena PK, Sheng L, Ali MR, Wan YY. miR-22
                                                                  inhibition reduces hepatic steatosis via FGF21 and FGFR1
               doi: 10.1038/nature02871
                                                                  induction. JHEP Rep. 2020;2(2):100093.
            48.  Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC,
               Flowers E. Review of databases for experimentally validated      doi: 10.1016/j.jhepr.2020.100093
               human microRNA-mRNA interactions. Database (Oxford).   60.  Castano C, Novials A, Parrizas M. Exosomes from short-
               2023;2023:baad014.                                 term  high-fat  or  high-sucrose  fed  mice  induce  hepatic
                                                                  steatosis through different pathways. Cells. 2022;12(1):169.
               doi: 10.1093/database/baad014
                                                                  doi: 10.3390/cells12010169
            49.  Alles J, Fehlmann T, Fischer U,  et al. An estimate of the
               total number of true human miRNAs.  Nucleic Acids Res.   61.  Panella R, Petri A, Desai BN, et al. MicroRNA-22 is a key
               2019;47(7):3353-3364.                              regulator of lipid and metabolic homeostasis. Int J Mol Sci.
                                                                  2023;24(16):12870.
               doi: 10.1093/nar/gkz097
                                                                  doi: 10.3390/ijms241612870
            50.  Hammond SM. An overview of microRNAs. Adv Drug Deliv
               Rev. 2015;87:3-14.                              62.  Bennett CF, Baker BF, Pham N, Swayze E, Geary RS.
                                                                  Pharmacology of antisense drugs.  Annu Rev Pharmacol
               doi: 10.1016/j.addr.2015.05.001
                                                                  Toxicol. 2017;57:81-105.
            51.  Mohr AM, Mott JL. Overview of microRNA biology. Semin
               Liver Dis. 2015;35(1):3-11.                        doi: 10.1146/annurev-pharmtox-010716-104846
                                                               63.  Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense
               doi: 10.1055/s-0034-1397344
                                                                  technology: An overview and prospectus.  Nat Rev Drug
            52.  Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing   Discov. 2021;20:427-453.
               the sequence-specificity of antisense oligonucleotides in      doi: 10.1038/s41573-021-00162-z
               drug discovery. Nucleic Acids Res. 2017;45(5):2262-2282.
                                                               64.  Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense
               doi: 10.1093/nar/gkx056
                                                                  technology: A review. J Biol Chem. 2021;296:100416.
            53.  Thibonnier M, Esau C. Metabolic benefits of Microrna-22
               inhibition. Nucleic Acid Ther. 2020;30(2):104-116.     doi: 10.1016/j.jbc.2021.100416
                                                               65.  Goyenvalle A, Jimenez-Mallebrera C, van Roon W,
               doi: 10.1089/nat.2019.0820
                                                                  et al. Considerations in the preclinical assessment of the
            54.  Thibonnier  M, Esau C, Ghosh S,  Wargent E,  Stocker C.   safety  of  antisense  oligonucleotides.  Nucleic Acid Ther.
               Metabolic and energetic benefits of microRNA-22 inhibition.   2023;33(1):1-16.
               BMJ Open Diabetes Res Care. 2020;8(1):e001478.
                                                                  doi: 10.1089/nat.2022.0061
               doi: 10.1136/bmjdrc-2020-001478
                                                               66.  Nielsen PE. Sequence-selective DNA recognition by
            55.  Keller A, Groger L, Tschernig T, et al. miRNATissueAtlas2:   synthetic ligands. Bioconjug Chem. 1991;2(1):1-12.
               An update to the human miRNA tissue atlas. Nucleic Acids      doi: 10.1021/bc00007a001
               Res. 2022;50(D1):D211-D221.
                                                               67.  Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-
               doi: 10.1093/nar/gkab808
                                                                  selective recognition of DNA by strand displacement
            56.  Thibonnier M, Ghosh S. Strategy for pre-clinical development   with  a  thymine-substituted  polyamide.  Science.
               of active targeting MicroRNA oligonucleotide therapeutics   1991;254(5037):1497-1500.
               for unmet medical needs. Int J Mol Sci. 2023;24(8):7126.
                                                                  doi: 10.1126/science.1962210
               doi: 10.3390/ijms24087126
                                                               68.  Pradeep SP, Malik S, Slack FJ, Bahal R. Unlocking the
            57.  Yang Z, Qin W, Huo J, Zhuo Q, Wang J, Wang L. MiR-22   potential of chemically modified peptide nucleic acids for
               modulates the expression of lipogenesis-related genes   RNA-based therapeutics. RNA. 2023;29(4):434-445.
               and promotes hepatic steatosis  in vitro.  FEBS Open Bio.      doi: 10.1261/rna.079498.122
               2021;11(1):322-332.
                                                               69.  Suparpprom C, Vilaivan T. Perspectives on conformationally
               doi: 10.1002/2211-5463.13026
                                                                  constrained peptide nucleic acid (PNA): Insights into the
            58.  Kaur K, Vig S, Srivastava R,  et al. Elevated hepatic miR-  structural design, properties and applications.  RSC Chem
               22-3p expression impairs gluconeogenesis by silencing   Biol. 2022;3(6):648-697.


            Volume 7 Issue 3 (2024)                         14                               doi: 10.36922/itps.3025
   62   63   64   65   66   67   68   69   70   71   72