Page 69 - ITPS-7-3
P. 69

INNOSC Theranostics and
            Pharmacological Sciences                                  Designing miRNA ONTs for cardiometabolic pandemics



               doi: 10.1161/CIRCRESAHA.121.320296                 doi: 10.2174/156802611795165098
            90.  Malik S, Kumar V, Liu CH, et al. Head on comparison of   101. McVicker RU, O’Boyle NM. Chirality of new drug approvals
               Self- and Nano-assemblies of Gamma peptide nucleic acid   (2013-2022):  Trends and  perspectives.  J  Med Chem.
               amphiphiles. Adv Funct Mater. 2022;32(7):2109552.  2024;67(4):2305-2320.
               doi: 10.1002/adfm.202109552                        doi: 10.1021/acs.jmedchem.3c02239
            91.  Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics,   102. Iwamoto N, Butler  DCD,  Svrzikapa  N,  et al. Control  of
               biodistribution and cell uptake of antisense oligonucleotides.   phosphorothioate stereochemistry substantially increases
               Adv Drug Deliv Rev. 2015;87:46-51.                 the efficacy of antisense oligonucleotides.  Nat  Biotechnol.
                                                                  2017;35(9):845-851.
               doi: 10.1016/j.addr.2015.01.008
                                                                  doi: 10.1038/nbt.3948
            92.  Andersson S, Antonsson M, Elebring M, Jansson-Lofmark R,
               Weidolf L. Drug metabolism and pharmacokinetic strategies   103. Jahns H, Taneja N, Willoughby JLS, et al. Chirality matters:
               for oligonucleotide- and mRNA-based drug development.   Stereo-defined phosphorothioate linkages at the termini
               Drug Discov Today. 2018;23(10):1733-1745.          of small interfering RNAs improve pharmacology in vivo.
                                                                  Nucleic Acids Res. 2022;50(3):1221-1240.
               doi: 10.1016/j.drudis.2018.05.030
                                                                  doi: 10.1093/nar/gkab544
            93.  Vervaeke P, Borgos SE, Sanders NN, Combes F. Regulatory
               guidelines and preclinical tools to study the biodistribution   104. Liu W, Iwamoto N, Marappan S, et al. Impact of stereopure
               of RNA therapeutics. Adv Drug Deliv Rev. 2022;184:114236.  chimeric backbone chemistries on the potency and
                                                                  durability of gene silencing by RNA interference.  Nucleic
               doi: 10.1016/j.addr.2022.114236
                                                                  Acids Res. 2023;51(9):4126-4147.
            94.  McDougall R, Ramsden D, Agarwal S, et al. The nonclinical
               disposition  and  pharmacokinetic/pharmacodynamic     doi: 10.1093/nar/gkad268
               properties of N-Acetylgalactosamine-conjugated small   105. Ryan CA, Rozners E. Impact of chirality and position of
               interfering RNA are highly predictable and build   lysine conjugation in triplex-forming peptide nucleic acids.
               confidence in translation to human.  Drug Metab Dispos.   ACS Omega. 2020;5(44):28722-28729.
               2022;50(6):781-797.
                                                                  doi: 10.1021/acsomega.0c04021
               doi: 10.1124/dmd.121.000428
                                                               106. Del Bene A, D’Aniello A, Tomassi S,  et  al. Ultrasound-
            95.  Fairweather S, Rogers M, Stoulig P, et al. Nuclease resistance   assisted Peptide Nucleic Acids Synthesis (US-PNAS).
               and protein recognition properties of DNA and hybrid PNA-  Ultrason Sonochem. 2023;95:106360.
               DNA four-way junctions. Biophys Chem. 2022;289:106863.
                                                                  doi: 10.1016/j.ultsonch.2023.106360
               doi: 10.1016/j.bpc.2022.106863
                                                               107. Shen  W,  De  Hoyos CL,  Sun  H,  Vickers TA,  Liang  XH,
            96.  Demidov VV, Potaman VN, Frank-Kamenetskii MD,    Crooke ST. Acute hepatotoxicity of 2’ fluoro-modified
               et al. Stability of peptide nucleic acids in human serum and   5-10-5 gapmer phosphorothioate oligonucleotides in mice
               cellular extracts. Biochem Pharmacol. 1994;48(6):1310-1313.  correlates with intracellular protein binding and the loss of
                                                                  DBHS proteins. Nucleic Acids Res. 2018;46(5):2204-2217.
               doi: 10.1016/0006-2952(94)90171-6
                                                                  doi: 10.1093/nar/gky060
            97.  Østergaard ME, De Hoyos CL, Wan WB, et al. Understanding
               the effect of controlling phosphorothioate chirality in the   108. Shen W, De Hoyos CL, Migawa MT,  et al. Chemical
               DNA gap on the potency and safety of gapmer antisense   modification  of  PS-ASO  therapeutics  reduces  cellular
               oligonucleotides. Nucleic Acids Res. 2020;48(4):1691-1700.  protein-binding and improves the therapeutic index.  Nat
                                                                  Biotechnol. 2019;37(6):640-650.
               doi: 10.1093/nar/gkaa031
                                                                  doi: 10.1038/s41587-019-0106-2
            98.  Hall J. Future directions for medicinal chemistry in the field
               of oligonucleotide therapeutics. RNA. 2023;29(4):423-433.  109. Corey DR, Damha MJ, Manoharan M. Challenges and
                                                                  opportunities  for  nucleic  acid  therapeutics.  Nucleic Acid
               doi: 10.1261/rna.079511.122
                                                                  Ther. 2022;32(1):8-13.
            99.  Funder ED, Albaek N, Moisan A, Sewing S, Koch T.
               Refining LNA safety profile by controlling phosphorothioate      doi: 10.1089/nat.2021.0085
               stereochemistry. PLoS One. 2020;15(6):e0232603.  110. Mangla P, Vicentini Q, Biscans A. therapeutic
                                                                  oligonucleotides:  An outlook  on chemical strategies to
               doi: 10.1371/journal.pone.0232603
                                                                  improve endosomal trafficking. Cells. 2023;12(18):2253.
            100. Brooks WH, Guida WC, Daniel KG. The significance of
               chirality in drug design and development.  Curr Top Med      doi: 10.3390/cells12182253
               Chem. 2011;11(7):760-770.                       111. Wan WB, Seth PP. The medicinal chemistry of therapeutic


            Volume 7 Issue 3 (2024)                         16                               doi: 10.36922/itps.3025
   64   65   66   67   68   69   70   71   72   73   74