Page 68 - ITPS-7-3
P. 68
INNOSC Theranostics and
Pharmacological Sciences Designing miRNA ONTs for cardiometabolic pandemics
doi: 10.1039/d2cb00017b 2022;65(4):3332-3342.
70. Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, doi: 10.1021/acs.jmedchem.1c01831
Gil RR, Ly DH. A simple gamma-backbone modification 80. Kim K, Kim HH, Lee CH, et al. Therapeutic efficacy of
preorganizes peptide nucleic acid into a helical structure. modified anti-miR21 in metastatic prostate cancer. Biochem
J Am Chem Soc. 2006;128(31):10258-10267.
Biophys Res Commun. 2020;529(3):707-713.
doi: 10.1021/ja0625576
doi: 10.1016/j.bbrc.2020.05.215
71. Brazil R. Peptide nucleic acids promise new therapeutics 81. Dhuri K, Pradeep SP, Shi J, et al. Simultaneous Targeting
and gene editing tools. ACS Cent Sci. 2023;9(1):3-6. of multiple oncomiRs with phosphorothioate or PNA-
doi: 10.1021/acscentsci.3c00016 based Anti-miRs in Lymphoma cell lines. Pharm Res.
2022;39(11):2709-2720.
72. Popella L, Jung J, Do PT, Hayward RJ, Barquist L, Vogel J.
Comprehensive analysis of PNA-based antisense antibiotics doi: 10.1007/s11095-022-03383-y
targeting various essential genes in uropathogenic 82. Papi C, Gasparello J, Zurlo M, et al. Combined treatment
Escherichia coli. Nucleic Acids Res. 2022;50(11):6435-6452. of bronchial epithelial Calu-3 cells with peptide nucleic
doi: 10.1093/nar/gkac362 acids targeting miR-145-5p and miR-101-3p: Synergistic
enhancement of the expression of the cystic fibrosis
73. Jing Z, Qi R, Thibonnier M, Ren P. Molecular transmembrane conductance regulator (CFTR) gene. Int J
dynamics study of the hybridization between RNA and Mol Sci. 2022;23(16):9348.
modified oligonucleotides. J Chem Theory Comput.
2019;15(11):6422-6432. doi: 10.3390/ijms23169348
doi: 10.1021/acs.jctc.9b00519 83. Fabbri E, Manicardi A, Tedeschi T, et al. Modulation of the
biological activity of microRNA-210 with peptide nucleic
74. Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next acids (PNAs). ChemMedChem. 2011;6(12):2192-2202.
generation miRNA inhibition using short anti-seed PNAs
encapsulated in PLGA nanoparticles. J Control Release. doi: 10.1002/cmdc.201100270
2020;327:406-419. 84. Gasparello J, Papi C, Zurlo M, et al. MicroRNAs miR-584-5p
doi: 10.1016/j.jconrel.2020.08.026 and miR-425-3p Are Up-regulated in plasma of colorectal
cancer (CRC) patients: Targeting with inhibitor peptide
75. Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for nucleic acids is associated with induction of apoptosis in
cancer therapy targeted to the tumour microenvironment. colon cancer cell lines. Cancers (Basel). 2022;15(1):128.
Nature. 2015;518(7537):107-110.
doi: 10.3390/cancers15010128
doi: 10.1038/nature13905
85. Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R.
76. Dhuri K, Gaddam RR, Vikram A, Slack FJ, Bahal R. Nanoparticle delivered Anti-miR-141-3p for stroke therapy.
Therapeutic potential of chemically modified, synthetic, Cells. 2021;10(5):1011.
triplex peptide nucleic acid-based oncomir inhibitors for
cancer therapy. Cancer Res. 2021;81(22):5613-5624. doi: 10.3390/cells10051011
doi: 10.1158/0008-5472.CAN-21-0736 86. Milani R, Brognara E, Fabbri E, et al. Targeting miR-155-5p
and miR-221-3p by peptide nucleic acids induces caspase-3
77. Fabani MM, Gait MJ. miR-122 targeting with LNA/2’- activation and apoptosis in temozolomide-resistant T98G
O-methyl oligonucleotide mixmers, peptide nucleic glioma cells. Int J Oncol. 2019;55(1):59-68.
acids (PNA), and PNA-peptide conjugates. RNA.
2008;14(2):336-346. doi: 10.3892/ijo.2019.4810
doi: 10.1261/rna.844108 87. Wang Y, Malik S, Suh HW, et al. Anti-seed PNAs targeting
multiple oncomiRs for brain tumor therapy. Sci Adv.
78. Torres AG, Threlfall RN, Gait MJ. Potent and sustained 2023;9(6):eabq7459.
cellular inhibition of miR-122 by lysine-derivatized peptide
nucleic acids (PNA) and phosphorothioate locked nucleic doi: 10.1126/sciadv.abq7459
acid (LNA)/2’-O-methyl (OMe) mixmer anti-miRs in 88. Price NL, Miguel V, Ding W, et al. Genetic deficiency or
the absence of transfection agents. Artif DNA PNA XNA. pharmacological inhibition of miR-33 protects from kidney
2011;2(3):71-78. fibrosis. JCI Insight. 2019;4(22):e131102.
doi: 10.4161/adna.17731 doi: 10.1172/jci.insight.131102
79. Gaddam RR, Dhuri K, Kim YR, et al. γ peptide nucleic 89. Zhang X, Rotllan N, Canfran-Duque A, et al. Targeted
acid-based miR-122 inhibition rescues vascular endothelial suppression of miRNA-33 using pHLIP improves
dysfunction in mice fed a high-fat diet. J Med Chem. atherosclerosis regression. Circ Res. 2022;131(1):77-90.
Volume 7 Issue 3 (2024) 15 doi: 10.36922/itps.3025

