Page 68 - ITPS-7-3
        P. 68
     INNOSC Theranostics and
            Pharmacological Sciences                                  Designing miRNA ONTs for cardiometabolic pandemics
               doi: 10.1039/d2cb00017b                            2022;65(4):3332-3342.
            70.  Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C,      doi: 10.1021/acs.jmedchem.1c01831
               Gil  RR,  Ly  DH.  A  simple  gamma-backbone  modification   80.  Kim K, Kim HH, Lee CH,  et al. Therapeutic efficacy of
               preorganizes peptide nucleic acid into a helical structure.   modified anti-miR21 in metastatic prostate cancer. Biochem
               J Am Chem Soc. 2006;128(31):10258-10267.
                                                                  Biophys Res Commun. 2020;529(3):707-713.
               doi: 10.1021/ja0625576
                                                                  doi: 10.1016/j.bbrc.2020.05.215
            71.  Brazil R. Peptide nucleic acids promise new therapeutics   81.  Dhuri K, Pradeep SP, Shi J,  et  al. Simultaneous Targeting
               and gene editing tools. ACS Cent Sci. 2023;9(1):3-6.  of multiple oncomiRs with phosphorothioate or PNA-
               doi: 10.1021/acscentsci.3c00016                    based Anti-miRs in Lymphoma cell lines.  Pharm  Res.
                                                                  2022;39(11):2709-2720.
            72.  Popella L, Jung J, Do PT, Hayward RJ, Barquist L, Vogel J.
               Comprehensive analysis of PNA-based antisense antibiotics      doi: 10.1007/s11095-022-03383-y
               targeting various essential genes in uropathogenic   82.  Papi C, Gasparello J, Zurlo M, et al. Combined treatment
               Escherichia coli. Nucleic Acids Res. 2022;50(11):6435-6452.  of bronchial epithelial Calu-3  cells with peptide nucleic
               doi: 10.1093/nar/gkac362                           acids targeting miR-145-5p and miR-101-3p: Synergistic
                                                                  enhancement  of  the  expression  of  the  cystic  fibrosis
            73.  Jing  Z,  Qi R, Thibonnier  M, Ren  P. Molecular   transmembrane conductance regulator (CFTR) gene. Int J
               dynamics study of the hybridization between RNA and   Mol Sci. 2022;23(16):9348.
               modified oligonucleotides.  J  Chem Theory Comput.
               2019;15(11):6422-6432.                             doi: 10.3390/ijms23169348
               doi: 10.1021/acs.jctc.9b00519                   83.  Fabbri E, Manicardi A, Tedeschi T, et al. Modulation of the
                                                                  biological activity of microRNA-210 with peptide nucleic
            74.  Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next   acids (PNAs). ChemMedChem. 2011;6(12):2192-2202.
               generation miRNA inhibition using short anti-seed PNAs
               encapsulated in  PLGA nanoparticles.  J  Control  Release.      doi: 10.1002/cmdc.201100270
               2020;327:406-419.                               84.  Gasparello J, Papi C, Zurlo M, et al. MicroRNAs miR-584-5p
               doi: 10.1016/j.jconrel.2020.08.026                 and miR-425-3p Are Up-regulated in plasma of colorectal
                                                                  cancer (CRC) patients: Targeting with inhibitor peptide
            75.  Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for   nucleic  acids  is  associated with  induction of  apoptosis  in
               cancer therapy targeted to the tumour microenvironment.   colon cancer cell lines. Cancers (Basel). 2022;15(1):128.
               Nature. 2015;518(7537):107-110.
                                                                  doi: 10.3390/cancers15010128
               doi: 10.1038/nature13905
                                                               85.  Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R.
            76.  Dhuri K, Gaddam RR, Vikram A, Slack FJ, Bahal R.   Nanoparticle delivered Anti-miR-141-3p for stroke therapy.
               Therapeutic potential of chemically modified, synthetic,   Cells. 2021;10(5):1011.
               triplex peptide nucleic acid-based oncomir inhibitors for
               cancer therapy. Cancer Res. 2021;81(22):5613-5624.     doi: 10.3390/cells10051011
               doi: 10.1158/0008-5472.CAN-21-0736              86.  Milani R, Brognara E, Fabbri E, et al. Targeting miR-155-5p
                                                                  and miR-221-3p by peptide nucleic acids induces caspase-3
            77.  Fabani  MM,  Gait  MJ.  miR-122  targeting  with  LNA/2’-  activation and apoptosis in temozolomide-resistant T98G
               O-methyl oligonucleotide mixmers, peptide nucleic   glioma cells. Int J Oncol. 2019;55(1):59-68.
               acids (PNA), and PNA-peptide conjugates.  RNA.
               2008;14(2):336-346.                                doi: 10.3892/ijo.2019.4810
               doi: 10.1261/rna.844108                         87.  Wang Y, Malik S, Suh HW, et al. Anti-seed PNAs targeting
                                                                  multiple oncomiRs for brain tumor therapy.  Sci Adv.
            78.  Torres AG, Threlfall RN, Gait MJ. Potent and sustained   2023;9(6):eabq7459.
               cellular inhibition of miR-122 by lysine-derivatized peptide
               nucleic acids (PNA) and phosphorothioate locked nucleic      doi: 10.1126/sciadv.abq7459
               acid (LNA)/2’-O-methyl (OMe) mixmer anti-miRs in   88.  Price NL, Miguel V, Ding W,  et al. Genetic deficiency or
               the absence of transfection agents.  Artif DNA PNA XNA.   pharmacological inhibition of miR-33 protects from kidney
               2011;2(3):71-78.                                   fibrosis. JCI Insight. 2019;4(22):e131102.
               doi: 10.4161/adna.17731                            doi: 10.1172/jci.insight.131102
            79.  Gaddam RR, Dhuri K, Kim YR,  et al.  γ peptide nucleic   89.  Zhang X, Rotllan N, Canfran-Duque A,  et al. Targeted
               acid-based miR-122 inhibition rescues vascular endothelial   suppression of miRNA-33 using pHLIP improves
               dysfunction in mice fed a high-fat diet.  J  Med Chem.   atherosclerosis regression. Circ Res. 2022;131(1):77-90.
            Volume 7 Issue 3 (2024)                         15                               doi: 10.36922/itps.3025
     	
