Page 24 - JCBP-2-3
P. 24

Journal of Clinical and
            Basic Psychosomatics                                                   The antidepressant effect of ketamine



               enhances  visual  sensory  evoked  potential  long-term   neurotransmitter response to ketamine treatment of major
               potentiation in patients with major depressive disorder. Biol   depressive disorder. Mol Psychiatry. 2016;21(3):320-327.
               Psychiatry Cogn Neurosci Neuroimaging. 2020;5(1):45-55.
                                                                  doi: 10.1038/mp.2015.83
               doi: 10.1016/j.bpsc.2019.07.002
                                                               45.  Chowdhury GM, Behar KL, Cho W, Thomas MA,
            36.  Armitage R, Hoffmann R, Trivedi M, Rush AJ. Slow-  Rothman DL, Sanacora G.  H-[ C]-nuclear magnetic
                                                                                         1
                                                                                             13
               wave activity in NREM  sleep: Sex and age effects in   resonance spectroscopy measures of ketamine’s effect on
               depressed outpatients and healthy controls. Psychiatry Res.   amino acid neurotransmitter metabolism.  Biol Psychiatry.
               2000;95(3):201-213.                                2012;71(11):1022-1025.
               doi: 10.1016/s0165-1781(00)00178-5                 doi: 10.1016/j.biopsych.2011.11.006
            37.  Duncan WC, Sarasso S, Ferrarelli F,  et al. Concomitant   46.  Milak MS, Rashid R, Dong Z,  et al. Assessment of
               BDNF  and  sleep  slow  wave  changes  indicate  ketamine-  relationship of ketamine dose with magnetic resonance
               induced  plasticity  in  major  depressive  disorder.  Int J   spectroscopy of Glx and GABA responses in adults with
               Neuropsychopharmacol. 2013;16(2):301-311.          major depression: A randomized clinical Trial. JAMA Netw
               doi: 10.1017/S1461145712000545                     Open. 2020;3(8):e2013211.

            38.  Duncan WC Jr., Selter J, Brutsche N, Sarasso S, Zarate CA      doi: 10.1001/jamanetworkopen.2020.13211
               Jr. Baseline delta sleep ratio predicts acute ketamine mood   47.  Evans JW, Lally N, An L,  et al. 7T  H-MRS in major
                                                                                                1
               response in major depressive disorder.  J  Affect Disord.   depressive disorder: A  Ketamine treatment study.
               2013;145(1):115-119.                               Neuropsychopharmacology. 2018;43(9):1908-1914.
               doi: 10.1016/j.jad.2012.05.042                     doi: 10.1038/s41386-018-0057-1
            39.  Rantamaki T, Kohtala S. Encoding, consolidation, and   48.  Pothula S, Kato T, Liu RJ, et al. Cell-type specific modulation
               renormalization in depression: Synaptic homeostasis,   of NMDA receptors triggers antidepressant actions.  Mol
               plasticity, and sleep integrate rapid antidepressant effects.   Psychiatry. 2021;26(9):5097-5111.
               Pharmacol Rev. 2020;72(2):439-465.
                                                                  doi: 10.1038/s41380-020-0796-3
               doi: 10.1124/pr.119.018697
                                                               49.  Miller  OH,  Moran  JT, Hall BJ.  Two  cellular hypotheses
            40.  De Diego-Adelino J, Portella MJ, Gomez-Anson B, et  al.   explaining the initiation of ketamine’s antidepressant actions:
               Hippocampal abnormalities of glutamate/glutamine,   Direct inhibition and disinhibition.  Neuropharmacology.
               N-acetylaspartate and choline in patients with depression   2016;100:17-26.
               are related to past illness burden.  J  Psychiatry Neurosci.
               2013;38(2):107-116.                                doi: 10.1016/j.neuropharm.2015.07.028
               doi: 10.1503/jpn.110185                         50.  Moaddel R, Luckenbaugh DA, Xie Y, et al. D-serine plasma
                                                                  concentration is a potential biomarker of (R,S)-ketamine
            41.  Draganov M, Vives-Gilabert Y, de Diego-Adelino J, Vicent-  antidepressant response in subjects with treatment-resistant
               Gil M, Puigdemont D, Portella MJ. Glutamatergic and   depression. Psychopharmacology (Berl). 2015;232(2):399-409.
               GABA-ergic abnormalities in First-episode depression.
               A  1-year follow-up 1H-MR spectroscopic study.  J  Affect      doi: 10.1007/s00213-014-3669-0
               Disord. 2020;266:572-577.                       51.  Ortiz R, Niciu MJ, Lukkahati N, et al. Shank3 as a potential
               doi: 10.1016/j.jad.2020.01.138                     biomarker of antidepressant response to ketamine and
                                                                  its neural correlates in bipolar depression. J Affect Disord.
                                                    1
            42.  Benson  KL,  Bottary  R,  Schoerning  L,  et al.  H  MRS   2015;172:307-311.
               measurement of cortical GABA and glutamate in primary
               insomnia and major depressive disorder: Relationship      doi: 10.1016/j.jad.2014.09.015
               to sleep quality and depression severity.  J  Affect Disord.   52.  Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L.
               2020;274:624-631.                                  Antidepressant-like effects of low ketamine dose is associated
               doi: 10.1016/j.jad.2020.05.026                     with increased hippocampal AMPA/NMDA receptor
                                                                  density ratio in female Wistar-Kyoto rats.  Neuroscience.
            43.  Wang KL, Liang K, Wang LJ,  et al. The association of
               glutamate level in pregenual anterior cingulate, anhedonia,   2012;213:72-80.
               and emotion-behavior decoupling in patients with major      doi: 10.1016/j.neuroscience.2012.03.052
               depressive disorder. Asian J Psychiatr. 2022;78:103306.  53.  Li  N, Lee  B, Liu RJ,  et al. mTOR-dependent  synapse
               doi: 10.1016/j.ajp.2022.103306                     formation underlies the rapid antidepressant effects of
                                                                  NMDA antagonists. Science. 2010;329(5994):959-964.
            44.  Milak MS, Proper CJ, Mulhern ST,  et al. A  pilot  in vivo
               proton magnetic resonance spectroscopy study of amino acid      doi: 10.1126/science.1190287


            Volume 2 Issue 3 (2024)                         11                              doi: 10.36922/jcbp.2596
   19   20   21   22   23   24   25   26   27   28   29