Page 33 - JCTR-11-2
P. 33
Journal of Clinical and
Translational Research US-mediated drug delivery
2024;272:116496. 141. DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic
doi: 10.1016/j.ejmech.2024.116496 silencing of mutant huntingtin with siRNA attenuates
striatal and cortical neuropathology and behavioral deficits.
132. Shen Y, Zhang J, Xu Y, et al. Ultrasound-enhanced brain Proc Natl Acad Sci U S A. 2007;104(43):17204-17209.
delivery of edaravone provides additive amelioration on
disease progression in an ALS mouse model. Brain Stimul. doi: 10.1073/pnas.0708285104
2023;16(2):628-641. 142. Chen KT, Chai WY, Lin YJ, et al. Neuronavigation-guided
doi: 10.1016/j.brs.2023.03.006 focused ultrasound for transcranial blood-brain barrier
opening and immunostimulation in brain tumors. Sci Adv.
133. Peggion C, Scalcon V, Massimino ML, et al. SOD1 in ALS: 2021;7(6):eabd0772.
Taking stock in pathogenic mechanisms and the role of
glial and muscle cells. Antioxidants (Basel). 2022;11(4):614. doi: 10.1126/sciadv.abd0772
doi: 10.3390/antiox11040614 143. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K.
Focused-ultrasound disruption of the blood-brain barrier
134. Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K. using closely-timed short pulses: Influence of sonication
Focused ultrasound for targeted delivery of siRNA and parameters and injection rate. Ultrasound Med Biol.
efficient knockdown of Htt expression. J Control Release. 2011;37(4):587-594.
2012;163(2):125-129.
doi: 10.1016/j.ultrasmedbio.2011.01.008
doi: 10.1016/j.jconrel.2012.08.012
144. Baghbani F, Moztarzadeh F. Bypassing multidrug resistant
135. Owusu-Yaw BS, Zhang Y, Garrett L, et al. Focused ovarian cancer using ultrasound responsive doxorubicin/
ultrasound-mediated disruption of the blood-brain barrier curcumin co-deliver alginate nanodroplets. Colloids Surf B
for AAV9 delivery in a mouse model of Huntington’s Biointerfaces. 2017;153:132-140.
disease. Pharmaceutics. 2024;16(6):710.
doi: 10.1016/j.colsurfb.2017.01.051
doi: 10.3390/pharmaceutics16060710
145. Yang T, Ming X, Jie L, et al. Ultrasound-triggered
136. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol
Exp Neurol. 1998;57(5):369-384. nanodroplets for targeted co-delivery of sorafenib/
doxorubicin for hepatocellular carcinoma therapy. J Biomed
doi: 10.1097/00005072-199805000-00001 Nanotechnol. 2019;15(9):1881-1896.
137. A novel gene containing a trinucleotide repeat that doi: 10.1166/jbn.2019.2823
is expanded and unstable on Huntington’s disease
chromosomes. The Huntington’s Disease Collaborative 146. Silverman RH, Urs R, Burgess M, Ketterling JA, Tezel G.
Research Group. Cell. 1993;72(6):971-983. High-frequency ultrasound activation of perfluorocarbon
nanodroplets for treatment of glaucoma. IEEE Trans
doi: 10.1016/0092-8674(93)90585-e Ultrason Ferroelectr Freq Control. 2022;69(6):1910-1916.
138. Rosenblatt A. Neuropsychiatry of Huntington’s disease. doi: 10.1109/TUFFC.2022.3142679
Dialogues Clin Neurosci. 2007;9(2):191-197.
147. Cao Y, Chen Y, Yu T, et al. Drug release from phase-
doi: 10.31887/DCNS.2007.9.2/arosenblatt changeable nanodroplets triggered by low-intensity focused
139. Saade J, Mestre TA. Huntington’s disease: Latest frontiers in ultrasound. Theranostics. 2018;8(5):1327-1339.
therapeutics. Curr Neurol Neurosci Rep. 2024;24(8):255-264. doi: 10.7150/thno.21492
doi: 10.1007/s11910-024-01345-y 148. Lee JY, Crake C, Teo B, et al. Ultrasound-enhanced siRNA
140. Singh K, Jain D, Sethi P, et al. Emerging pharmacological delivery using magnetic nanoparticle-loaded chitosan-
approaches for Huntington’s disease. Eur J Pharmacol. deoxycholic acid nanodroplets. Adv Healthc Mater.
2024;980:176873. 2017;6(8): 1601246.
doi: 10.1016/j.ejphar.2024.176873 doi: 10.1002/adhm.201601246
Volume 11 Issue 2 (2025) 27 doi: 10.36922/jctr.24.00061

