Page 33 - JCTR-11-2
P. 33

Journal of Clinical and
            Translational Research                                                        US-mediated drug delivery



                2024;272:116496.                               141.  DiFiglia  M,  Sena-Esteves  M,  Chase  K,  et al.  Therapeutic
                doi: 10.1016/j.ejmech.2024.116496                  silencing of mutant huntingtin with siRNA attenuates
                                                                   striatal and cortical neuropathology and behavioral deficits.
            132.  Shen Y, Zhang J, Xu Y, et al. Ultrasound-enhanced brain   Proc Natl Acad Sci U S A. 2007;104(43):17204-17209.
                delivery of edaravone provides additive amelioration on
                disease progression in an ALS mouse model. Brain Stimul.      doi: 10.1073/pnas.0708285104
                2023;16(2):628-641.                            142.  Chen KT, Chai WY, Lin YJ, et al. Neuronavigation-guided
                doi: 10.1016/j.brs.2023.03.006                     focused ultrasound for transcranial blood-brain barrier
                                                                   opening and immunostimulation in brain tumors. Sci Adv.
            133.  Peggion C, Scalcon V, Massimino ML, et al. SOD1 in ALS:   2021;7(6):eabd0772.
                Taking stock in pathogenic mechanisms and the role of
                glial and muscle cells. Antioxidants (Basel). 2022;11(4):614.     doi: 10.1126/sciadv.abd0772
                doi: 10.3390/antiox11040614                    143.  O’Reilly MA, Waspe AC, Ganguly M, Hynynen K.
                                                                   Focused-ultrasound disruption of the blood-brain barrier
            134.  Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K.   using closely-timed short pulses: Influence of sonication
                Focused ultrasound for targeted delivery of siRNA and   parameters and injection rate.  Ultrasound  Med  Biol.
                efficient knockdown of Htt expression. J Control Release.   2011;37(4):587-594.
                2012;163(2):125-129.
                                                                   doi: 10.1016/j.ultrasmedbio.2011.01.008
                doi: 10.1016/j.jconrel.2012.08.012
                                                               144.  Baghbani F, Moztarzadeh F. Bypassing multidrug resistant
            135.  Owusu-Yaw  BS,  Zhang  Y,  Garrett  L,  et al.  Focused   ovarian cancer using ultrasound responsive doxorubicin/
                ultrasound-mediated disruption of the blood-brain barrier   curcumin co-deliver alginate nanodroplets. Colloids Surf B
                for AAV9 delivery in a mouse model of Huntington’s   Biointerfaces. 2017;153:132-140.
                disease. Pharmaceutics. 2024;16(6):710.
                                                                   doi: 10.1016/j.colsurfb.2017.01.051
                doi: 10.3390/pharmaceutics16060710
                                                               145.  Yang  T,  Ming  X,  Jie  L,  et al.  Ultrasound-triggered
            136.  Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol
                Exp Neurol. 1998;57(5):369-384.                    nanodroplets for targeted co-delivery of sorafenib/
                                                                   doxorubicin for hepatocellular carcinoma therapy. J Biomed
                doi: 10.1097/00005072-199805000-00001              Nanotechnol. 2019;15(9):1881-1896.
            137.  A novel  gene containing a trinucleotide  repeat that      doi: 10.1166/jbn.2019.2823
                is expanded and unstable on Huntington’s disease
                chromosomes. The Huntington’s Disease Collaborative   146.  Silverman RH, Urs R, Burgess M, Ketterling JA, Tezel G.
                Research Group. Cell. 1993;72(6):971-983.          High-frequency ultrasound activation of perfluorocarbon
                                                                   nanodroplets  for  treatment  of  glaucoma.  IEEE Trans
                doi: 10.1016/0092-8674(93)90585-e                  Ultrason Ferroelectr Freq Control. 2022;69(6):1910-1916.
            138.  Rosenblatt A. Neuropsychiatry of Huntington’s disease.      doi: 10.1109/TUFFC.2022.3142679
                Dialogues Clin Neurosci. 2007;9(2):191-197.
                                                               147.  Cao Y, Chen Y, Yu T,  et al. Drug release from phase-
                doi: 10.31887/DCNS.2007.9.2/arosenblatt            changeable nanodroplets triggered by low-intensity focused
            139.  Saade J, Mestre TA. Huntington’s disease: Latest frontiers in   ultrasound. Theranostics. 2018;8(5):1327-1339.
                therapeutics. Curr Neurol Neurosci Rep. 2024;24(8):255-264.     doi: 10.7150/thno.21492
                doi: 10.1007/s11910-024-01345-y                148.  Lee JY, Crake C, Teo B, et al. Ultrasound-enhanced siRNA
            140.  Singh K, Jain D, Sethi P, et al. Emerging pharmacological   delivery using magnetic nanoparticle-loaded chitosan-
                approaches  for  Huntington’s  disease.  Eur  J  Pharmacol.   deoxycholic acid nanodroplets.  Adv Healthc Mater.
                2024;980:176873.                                   2017;6(8): 1601246.
                doi: 10.1016/j.ejphar.2024.176873                  doi: 10.1002/adhm.201601246















            Volume 11 Issue 2 (2025)                        27                            doi: 10.36922/jctr.24.00061
   28   29   30   31   32   33   34   35   36   37   38