Page 118 - JCTR-11-5
P. 118

Journal of Clinical and
            Translational Research                                       Predicting coordinator workload with adapted OPAL



               Epidemiol. 2011;64(1):96-106.                      doi: 10.4097/kjae.2015.68.6.540
               doi: 10.1016/j.jclinepi.2010.03.002             18.  Good MJ, Lubejko B, Humphries K, Medders A. Measuring
            12.  Wu K, Wu E, DAndrea M, et al. Machine learning prediction   clinical trial-associated workload in a community clinical
               of clinical trial operational efficiency. AAPS J. 2022;24(3):57.  oncology program. J Oncol Pract. 2013;9(4):211-215.
               doi: 10.1208/s12248-022-00703-3                    doi: 10.1200/jop.2012.000797
            13.  Moons KG, Altman DG, Reitsma JB,  et al. Transparent   19.  Richie  A,  Gamble  D,  Tavlarides  A,  Strok  K,  Griffin  C.
               reporting of a multivariable prediction model for individual   Establishing the link between trial complexity and
               prognosis  or  diagnosis  (TRIPOD):  Explanation  and   coordinator capacity. Clin Res. 2020;34:8-16.
               elaboration. Ann Intern Med. 2015;162(1):W1-W73.
                                                               20.  WCG.  2024  Clinical Research  Site Challenges Report.
               doi: 10.7326/M14-0698                              WCG; 2024. Available from: https://www.wcgclinical.com/
            14.  Kumar B, Verma A, Verma P. Optimizing resource allocation   wp-content/uploads/2024/10/wcg_2024_clinical_research_
               using proactive scaling with predictive models and custom   site_challenges_report.pdf?utm_source=chatgpt.com [Last
               resources. Comput Electr Eng. 2024;118:109419.     accessed on 2025 Apr 04].
               doi: 10.1016/j.compeleceng.2024.109419          21.  Loree  JM,  Anand  S,  Dasari  A,  et al.  Disparity  of  race
            15.  Qureshi SM, Purdy N, Neumann WP. Developing a    reporting  and  representation  in  clinical  trials  leading  to
               modelling approach to quantify quality of care and nurse   cancer drug approvals from 2008 to 2018.  JAMA Oncol.
               workload  -  field validation study.  Oper Res Health Care.   2019;5(10):e191870.
               2021;29:100301.                                    doi: 10.1001/jamaoncol.2019.1870
               doi: 10.1016/j.orhc.2021.100301
                                                               22.  Chen MS Jr, Lara PN, Dang JH, Paterniti DA, Kelly K.
            16.  Eichenseer P, Hans L, Winkler H. A data-driven machine   Twenty years post-NIH Revitalization Act: Enhancing
               learning model for forecasting delivery positions in logistics   minority participation in clinical trials (EMPaCT): Laying
               for workforce planning. Supply Chain Anal. 2025;9:100099.  the groundwork for improving minority clinical trial accrual:
               doi: 10.1016/j.sca.2024.100099                     Renewing the case for enhancing minority participation in
                                                                  cancer clinical trials. Cancer. 2014;120(Suppl 7):1091-1096.
            17.  Kim TK. T test as a parametric statistic. Korean J Anesthesiol.
               2015;68(6):540-546.                                doi: 10.1002/cncr.28575







































            Volume 11 Issue 5 (2025)                       112                         doi: 10.36922/JCTR025260032
   113   114   115   116   117   118   119   120