Page 166 - MI-2-3
P. 166

Microbes & Immunity                                                             Hyphae and healthspan



               symptoms in survivors of coronavirus disease 2019   126. Wang Z, Snyder M, Kenison JE, et al. How the AhR became
               (COVID-19). Nutrition. 2021;90:111308.             important in cancer: The role of chronically active AhR in
               doi: 10.1016/j.nut.2021.111308                     cancer aggression. Int J Mol Sci. 2020;22(1):387.
            115.  Kurgan Ş, Önder C, Balcı N, et al. Influence of periodontal      doi: 10.3390/ijms22010387
               inflammation on tryptophan-kynurenine metabolism: A cross-  127. Zhu K, Meng Q, Zhang Z, et al. Aryl hydrocarbon receptor
               sectional study. Clin Oral Investig. 2022;26(9):5721-5732.  pathway: Role, regulation and intervention in atherosclerosis
               doi: 10.1007/s00784-022-04528-4                    therapy (Review). Mol Med Rep. 2019;20(6):4763-4773.
            116. Harris DMM, Szymczak S, Schuchardt S, et al. Tryptophan      doi: 10.3892/mmr.2019.10748
               degradation as a systems phenomenon in inflammation - an   128. Zeng X, Feng M, Lu J,  et al. Beyond transcription, aryl
               analysis  across  13  chronic  inflammatory  diseases.   hydrocarbon receptor plays a protective role in periodontitis
               EBioMedicine. 2024;102:105056.                     by interacting with CaMKII. J Periodontol. 2024.
               doi: 10.1016/j.ebiom.2024.105056                   doi: 10.1002/JPER.24-0021
            117. Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism   129. Meissner  WG,  Remy  P,  Giordana  C,  et  al.  Trial  of
               impacts upon Candida immunogenicity and pathogenicity   lixisenatide in early Parkinson’s disease.  N  Engl J Med.
               at multiple levels. Trends Microbiol. 2014;22(11):614-22.  2024;390(13):1176-1185.
               doi: 10.1016/j.tim.2014.07.001                     doi: 10.1056/NEJMoa2312323
            118. Modoux M, Rolhion N, Lefevre JH,  et al. Butyrate acts   130. Edison  P.  GLP-1 Drug Liraglutide May Protect Against
               through HDAC inhibition to enhance aryl hydrocarbon   Dementia.  Philadelphia:  Alzheimer’s  Association
               receptor activation by gut microbiota-derived ligands. Gut   International  Conference®  (AAIC®);  2024,  Available  from:
               Microbes. 2022;14(1):2105637.                      https://aaic.alz.org/downloads2024/aaic-2024-glp-1-ph2-
               doi: 10.1080/19490976.2022.2105637                 trial.pdf [Last accessed on 2024 Dec 09].
            119. McCrory C, Lenardon M, Traven A. Bacteria-derived   131. Wang L, Xu R, Kaelber DC, Berger NA. Glucagon-like
               short-chain fatty acids as potential regulators of fungal   peptide 1 receptor agonists and 13 obesity-associated
               commensalism and pathogenesis.  Trends Microbiol.   cancers in patients with type 2 diabetes. JAMA Netw Open.
               2024;32:1106-1118.                                 2024;7(7):e2421305.
               doi: 10.1016/j.tim.2024.04.004                     doi: 10.1001/jamanetworkopen.2024.21305
            120. Badawy AA. Tryptophan metabolism and disposition   132. Kherad  Z,  Yazdanpanah  S,  Saadat  F,  Pakshir  K,
               in  cancer  biology  and  immunotherapy.  Biosci   Zomorodian  K. Vitamin D3: A promising antifungal and
               Rep. 2022;42(11):BSR20221682.                      antibiofilm agent against Candida species. Curr Med Mycol.
               doi: 10.1042/BSR20221682                           2023;9(2):17-22.
            121. Seo SK, Kwon B. Immune regulation through tryptophan      doi: 10.18502/cmm.2023.345062.1416
               metabolism. Exp Mol Med. 2023;55(7):1371-1379.  133. Lei J, Xiao W, Zhang J, et al. Antifungal activity of vitamin D   3
               doi: 10.1038/s12276-023-01028-7                    against Candida albicans in vitro and in vivo. Microbiol Res.
                                                                  2022;265:127200.
            122. Savonije K, Weaver DF. The role of tryptophan metabolism
               in Alzheimer’s disease. Brain Sci. 2023;13(2):292.     doi: 10.1016/j.micres.2022.127200
               doi: 10.3390/brainsci13020292                   134. Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2
                                                                  spike protein: Structural and functional implications. Curr
            123. Xie L, Wu Q, Li K,  et al. Tryptophan metabolism in   Opin Struct Biol. 2022;74:102388.
               Alzheimer’s  disease  with  theinvolvement  of  microglia
               and astrocyte crosstalk and gut-brain axis.  Aging Dis.      doi: 10.1016/j.sbi.2022.102388
               2024;15(5):2168-2190.                           135. Essex M, Millet Pascual-Leone B, Löber U,  et al. Gut
               doi: 10.14336/AD.2024.0134                         microbiota dysbiosis is associated with altered tryptophan
                                                                  metabolism and dysregulated inflammatory response in
            124. Xue C, Li G, Zheng Q,  et al. Tryptophan metabolism in   COVID-19. NPJ Biofilms Microbiomes. 2024;10:66.
               health and disease. Cell Metab. 2023;35(8):1304-1326.
                                                                  doi: 10.1038/s41522-024-00538-0
               doi: 10.1016/j.cmet.2023.06.004
                                                               136. Centers for Disease Control and Prevention. MTHFR Gene
            125. Ojo ES, Tischkau SA. The role of AhR in the hallmarks of   Variant and Folic Acid Facts. Available from: https://www.
               brain aging: Friend and foe. Cells. 2021;10(10):2729.
                                                                  cdc.gov/folic-acid/data-research/mthfr/index.html  [Last
               doi: 10.3390/cells10102729                         accessed on 2024 Dec 09].


            Volume 2 Issue 3 (2025)                        158                               doi: 10.36922/mi.4736
   161   162   163   164   165   166   167   168   169   170   171