Page 71 - MSAM-1-3
P. 71

Materials Science in Additive Manufacturing                       Inconel 718-CoCrMo bimetallic structures


               Technol, 113: 3139–3162.                        25.  Bettini E, Eriksson T, Boström M,  et al., 2011, Influence
                                                                  of metal carbides  on dissolution behavior of biomedical
               https://doi.org/10.1007/s00170-021-06835-8
                                                                  CoCrMo alloy: SEM, TEM and AFM studies. Electrochim
            17.  Zhang B, Xiu M, Tan YT, et al., 2019, Pitting corrosion of   Acta, 56: 9413–9419.
               SLM inconel 718 sample under surface and heat treatments.
               Appl Surf Sci, 490: 556–567.                       https://doi.org/10.1016/j.electacta.2011.08.028
                                                               26.  Bawane KK, Srinivasan D, Banerjee D, 2018, Microstructural
               https://doi.org/10.1016/j.apsusc.2019.06.043
                                                                  evolution and mechanical properties of direct metal laser-
            18.  Li L, Gong X, Ye X, et al., 2018, Influence of building direction   sintered (DMLS) CoCrMo after heat treatment. Metallurgical
               on the oxidation behavior of inconel 718 alloy fabricated by   Mater Trans A, 49: 3793–3811.
               additive manufacture of electron beam melting.  Materials
               (Basel), 11: 2549.                                 https://doi.org/10.1007/s11661-018-4771-4
                                                               27.  Cornacchia G, Cecchel S, Battini D,  et al., 2022,
               https://doi.org/10.3390/ma11122549
                                                                  Microstructural,  mechanical,  and  tribological
            19.  Hedberg YS, Qian B, Shen Z,  et al., 2014,  In vitro   characterization of selective laser melted CoCrMo alloy
               biocompatibility  of CoCrMo dental  alloys  fabricated by   under different heat treatment conditions and hot isostatic
               selective laser melting. Dent Mater, 30: 525–534.  pressing. Adv Eng Mater, 24: 2100928.
               https://doi.org/10.1016/j.dental.2014.02.008       https://doi.org/10.1002/adem.202100928
            20.  Wang Q, Parry M, Masri BA, et al., 2017, Failure mechanisms   28.  Wen Y, Zhang B, Narayan RL,  et al., 2021, Laser powder
               in  CoCrMo  modular  femoral  stems  for  revision  total   bed fusion of compositionally graded CoCrMo-inconel 718.
               hip arthroplasty.  J  Biomedl Mater Res B Appl Biomater,   Addit Manuf, 40: 101926.
               105: 1525–1535.
                                                                  https://doi.org/10.1016/j.addma.2021.101926
               https://doi.org/10.1002/jbm.b.33693
                                                               29.  Khanna AS, 2018, High-temperature oxidation. In:
            21.  Mantrala KM, Das M, Balla VK, et al., 2014, Laser-deposited   Kutz M, editor. Handbook of Environmental Degradation
               CoCrMo alloy: Microstructure, wear, and electrochemical   of Materials. 3   ed., Ch. 6. William Andrew Publishing,
                                                                             rd
               properties. J Mater Res, 29: 2021–2027.            Norwich, NY, p117–132.
               https://doi.org/10.1557/jmr.2014.163               https://doi.org/10.1016/B978-0-323-52472-8.00006-X
            22.  Girão DC, Béreš M, Jardini AL, et al., 2020, An assessment   30.  Oje AM, Ogwu AA, 2017, Chromium oxide coatings with
               of biomedical CoCrMo alloy fabricated by direct metal laser   the  potential for  eliminating  the  risk  of chromium ion
               sintering technique for implant applications. Mater Sci Eng   release in orthopaedic implants. R Soc Open Sci, 4: 170218.
               C, 107: 110305.
                                                                  https://doi.org/10.1098/rsos.170218
               https://doi.org/10.1016/j.msec.2019.110305
                                                               31.  Tsai SC, Huntz AM, Dolin C, 1996, Growth mechanism of
            23.  Dijmarescu MR, Popovici TD, Tarba IC,  et al., 2018, An   Cr2O3 scales: Oxygen and chromium diffusion, oxidation
               experimental  study  on  cutting  forces  when  machining  a   kinetics and effect of yttrium. Mater Sci Eng A, 212: 6–13.
               CoCrMo alloy. IOP Conf Mater Sci Eng, 400: 022019.
                                                                  https://doi.org/10.1016/0921-5093(96)10173-8
               https://doi.org/10.1088/1757-899X/400/2/022019
                                                               32.  Mayrhofer PH, Rachbauer R, Holec D,  et al., 2014,
            24.  Fernandez-Zelaia P, Nguyen V, Zhang H, et al., 2019, The   4.14-protective transition metal nitride coatings. In: Hashmi
               effects of material anisotropy on secondary processing of   S, Editor-in-Chief.  Comprehensive Materials Processing.
               additively manufactured CoCrMo. Addit Manuf, 29: 100764.  Elsevier, Oxford, p355–388.
               https://doi.org/10.1016/j.addma.2019.06.015        https://doi.org/10.1016/B978-0-08-096532-1.00423-4



















            Volume 1 Issue 3 (2022)                         8                      https://doi.org/10.18063/msam.v1i3.18
   66   67   68   69   70   71   72   73   74   75   76