Page 71 - MSAM-1-3
P. 71
Materials Science in Additive Manufacturing Inconel 718-CoCrMo bimetallic structures
Technol, 113: 3139–3162. 25. Bettini E, Eriksson T, Boström M, et al., 2011, Influence
of metal carbides on dissolution behavior of biomedical
https://doi.org/10.1007/s00170-021-06835-8
CoCrMo alloy: SEM, TEM and AFM studies. Electrochim
17. Zhang B, Xiu M, Tan YT, et al., 2019, Pitting corrosion of Acta, 56: 9413–9419.
SLM inconel 718 sample under surface and heat treatments.
Appl Surf Sci, 490: 556–567. https://doi.org/10.1016/j.electacta.2011.08.028
26. Bawane KK, Srinivasan D, Banerjee D, 2018, Microstructural
https://doi.org/10.1016/j.apsusc.2019.06.043
evolution and mechanical properties of direct metal laser-
18. Li L, Gong X, Ye X, et al., 2018, Influence of building direction sintered (DMLS) CoCrMo after heat treatment. Metallurgical
on the oxidation behavior of inconel 718 alloy fabricated by Mater Trans A, 49: 3793–3811.
additive manufacture of electron beam melting. Materials
(Basel), 11: 2549. https://doi.org/10.1007/s11661-018-4771-4
27. Cornacchia G, Cecchel S, Battini D, et al., 2022,
https://doi.org/10.3390/ma11122549
Microstructural, mechanical, and tribological
19. Hedberg YS, Qian B, Shen Z, et al., 2014, In vitro characterization of selective laser melted CoCrMo alloy
biocompatibility of CoCrMo dental alloys fabricated by under different heat treatment conditions and hot isostatic
selective laser melting. Dent Mater, 30: 525–534. pressing. Adv Eng Mater, 24: 2100928.
https://doi.org/10.1016/j.dental.2014.02.008 https://doi.org/10.1002/adem.202100928
20. Wang Q, Parry M, Masri BA, et al., 2017, Failure mechanisms 28. Wen Y, Zhang B, Narayan RL, et al., 2021, Laser powder
in CoCrMo modular femoral stems for revision total bed fusion of compositionally graded CoCrMo-inconel 718.
hip arthroplasty. J Biomedl Mater Res B Appl Biomater, Addit Manuf, 40: 101926.
105: 1525–1535.
https://doi.org/10.1016/j.addma.2021.101926
https://doi.org/10.1002/jbm.b.33693
29. Khanna AS, 2018, High-temperature oxidation. In:
21. Mantrala KM, Das M, Balla VK, et al., 2014, Laser-deposited Kutz M, editor. Handbook of Environmental Degradation
CoCrMo alloy: Microstructure, wear, and electrochemical of Materials. 3 ed., Ch. 6. William Andrew Publishing,
rd
properties. J Mater Res, 29: 2021–2027. Norwich, NY, p117–132.
https://doi.org/10.1557/jmr.2014.163 https://doi.org/10.1016/B978-0-323-52472-8.00006-X
22. Girão DC, Béreš M, Jardini AL, et al., 2020, An assessment 30. Oje AM, Ogwu AA, 2017, Chromium oxide coatings with
of biomedical CoCrMo alloy fabricated by direct metal laser the potential for eliminating the risk of chromium ion
sintering technique for implant applications. Mater Sci Eng release in orthopaedic implants. R Soc Open Sci, 4: 170218.
C, 107: 110305.
https://doi.org/10.1098/rsos.170218
https://doi.org/10.1016/j.msec.2019.110305
31. Tsai SC, Huntz AM, Dolin C, 1996, Growth mechanism of
23. Dijmarescu MR, Popovici TD, Tarba IC, et al., 2018, An Cr2O3 scales: Oxygen and chromium diffusion, oxidation
experimental study on cutting forces when machining a kinetics and effect of yttrium. Mater Sci Eng A, 212: 6–13.
CoCrMo alloy. IOP Conf Mater Sci Eng, 400: 022019.
https://doi.org/10.1016/0921-5093(96)10173-8
https://doi.org/10.1088/1757-899X/400/2/022019
32. Mayrhofer PH, Rachbauer R, Holec D, et al., 2014,
24. Fernandez-Zelaia P, Nguyen V, Zhang H, et al., 2019, The 4.14-protective transition metal nitride coatings. In: Hashmi
effects of material anisotropy on secondary processing of S, Editor-in-Chief. Comprehensive Materials Processing.
additively manufactured CoCrMo. Addit Manuf, 29: 100764. Elsevier, Oxford, p355–388.
https://doi.org/10.1016/j.addma.2019.06.015 https://doi.org/10.1016/B978-0-08-096532-1.00423-4
Volume 1 Issue 3 (2022) 8 https://doi.org/10.18063/msam.v1i3.18

