Page 78 - MSAM-1-3
P. 78

Materials Science in Additive Manufacturing                      2D/3D visualization software for bioprinting


            12.  Miri AK, Nieto D, Iglesias L,  et al., 2018, Bioprinting:      https://doi.org/10.18063/msam.v1i1.7
               Microfluidics‐enabled  multimaterial  maskless  19.  Abdelrahman S, Alsanie WF, Khan ZN, 2022, A Parkinson’s
               stereolithographic bioprinting (Adv. Mater. 27/2018).  Adv
               Mater (Weinheim), 30: 1870201–n/a.                 disease model composed of 3D bioprinted dopaminergic
                                                                  neurons within a biomimetic peptide scaffold. Biofabrication,
               https://doi.org/10.1002/adma.201870201             14: 044103.
            13.  Ng WL, Chan A, Ong YS, et al., 2020, Deep learning for      https://doi.org/10.1088/1758-5090/ac7eec
               fabrication and maturation of 3D bioprinted tissues and
               organs. Virtual Phys Prototyp, 15: 340–358.     20.  Hammad N, AlZaid S, Alwazani H, 2022, TwinPrint:
                                                                  A Dual-Arm Robotic System for 3D Biofabrication, Viewed
               https://doi.org/10.1080/17452759.2020.1771741      August 22, 2022. In: RobotoKAUST KAUST Research
            14.  An J, Chua CK, Mironov V, 2021, Application of machine   Conference on Robotics and Autonomy.
               learning in 3D bioprinting: Focus on development of big   21.  Albalawi H, Khan ZN, Valle-Pérez AU,  et al., 2021,
               data and digital twin. Int J Bioprint, 7: 342.     Sustainable and eco-friendly coral restoration through 3D
               https://doi.org/10.18063/ijb.v7i1.342              printing and fabrication. ACS Sustain Chem Eng, 9: 12634–
                                                                  12645.
            15.  Bikas H, Stavropoulos P, Chryssolouris G, 2015, Additive
               manufacturing methods and modelling approaches:      https://doi.org/10.1021/acssuschemeng.1c04148
               A critical review. Int J Adv Manuf Technol, 83: 389–405.  22.  Lim J, 2022, Plotting with PyQtGraph Create custom plots
               https://doi.org/10.1007/s00170-015-7576-2          in PyQt with PyQtGraph, 2020. Available from: https://
                                                                  www.pythonguis.com/tutorials/plotting-pyqtgraph  [Last
            16.  Ueng SK, Chen LK, Jen SY, 2017, A Preview System for 3D   accessed on 2020 May 02].
               Printing. In: 2017 International Conference on Applied
               System Innovation (ICASI), p1508–1511.          23.  Zhang Y, 2020, Gcode-Reader. Available from: https://
                                                                  github.com/zhangyaqi1989/Gcode-Reader [Last accessed
            17.  Gahbiche MA, Boudhaouia S, Giraud E, 2020, A finite   on 2021 Feb 02].
               element simulation of the incremental sheet forming
               process: A new method for G-code implementation. Int J   24.  Marvin Killing, 2014, QxtSpanSlider. Available from: https://
               Mater Prod Technol, 61: 68–86.                     github.com/mkilling/QxtSpanSlider.py  [Last  accessed  on
                                                                  2021 Sep 16].
            18.  Khan Z, Albalawi H, Valle-Perez A, 2022, From 3D printed
               molds to bioprinted scaffolds: A hybrid material extrusion   25.  Coolsunxu, 2021, Video_Cut. Available from: https://
               and vat polymerization bioprinting approach for soft matter   github.com/coolsunxu/Video_Cut/blob/main/main.py
               constructs. Mater Sci Addit Manuf, 1: 7.           [Last accessed on 2021 Sep 22].




































            Volume 1 Issue 3 (2022)                         7                      https://doi.org/10.18063/msam.v1i3.19
   73   74   75   76   77   78   79   80   81   82   83