Page 39 - MSAM-1-4
P. 39

Materials Science in Additive Manufacturing                       Process optimization of SEBM IN718 via ML


            42.  Smola AJ, Schölkopf B, 2004, A tutorial on support vector   142: 82–94.
               regression. Stat Comput, 14: 199–222.
                                                                  https://doi.org/10.1016/j.actamat.2017.09.047
               https://doi.org/10.1023/b: stco.0000035301.49549.88
                                                               51.  Sun SH, Koizumi Y, Saito T,  et al., 2018, Electron beam
            43.  Luu DN, Zhou W, Nai SM, 2022, Mitigation of liquation   additive  manufacturing  of  Inconel  718  alloy  rods:  Impact
               cracking in selective laser melted Inconel 718 through   of build direction on microstructure and high-temperature
               optimization of layer thickness and laser energy density.   tensile properties. Addit Manuf, 23: 457–470.
               J Mater Process Technol, 299: 117374.
                                                                  https://doi.org/10.1016/j.addma.2018.08.017
               https://doi.org/10.1016/j.jmatprotec.2021.117374
                                                               52.  Gui Y, Aoyagi K, Bian H, et al., 2022, Detection, classification
            44.  Balbaa M, Mekhiel S, Elbestawi M, et al., 2020, On selective   and prediction of internal defects from surface morphology
               laser melting of Inconel 718: Densification, surface   data of metal parts fabricated by powder bed fusion type
               roughness, and residual stresses. Mater Design, 193: 108818.   additive  manufacturing  using  an  electron  beam. Addit
                                                                  Manuf, 54: 102736.
               https://doi.org/10.1016/j.matdes.2020.108818
                                                                  https://doi.org/10.1016/j.addma.2022.102736
            45.  Im SY, Jun SY, Lee JW, et al., 2020, Unidirectional columnar
               microstructure and its effect on the enhanced creep   53.  Bauereiß A, Scharowsky T, Körner C, 2014, Defect
               resistance of selective electron beam melted Inconel 718.   generation  and  propagation  mechanism  during  additive
               J Alloys Comp, 817: 153320.                        manufacturing by selective beam melting. J Mater Process
                                                                  Technol, 214: 2522–2528.
               https://doi.org/10.1016/j.jallcom.2019.153320
                                                                  https://doi.org/10.1016/j.jmatprotec.2014.05.002
            46.  Zhang L, Li Y, Zhang S, et al., 2021, Selective laser melting
               of IN738 superalloy with a low Mn+Si content: Effect of   54.  Strondl A, Palm M, Gnauk J,  et al., 2011, Microstructure
               energy input on characteristics of molten pool, metallurgical   and mechanical properties of nickel based superalloy IN718
               defects, microstructures and mechanical properties. Mater   produced by rapid prototyping with electron beam melting
               Sci Eng A, 826: 141985.                            (EBM). Mater Sci Technol, 27: 876–883.
               https://doi.org/10.1016/j.msea.2021.141985         https://doi.org/10.1179/026708309x12468927349451
            47.  Pedregosa F, Varoquaux G, Gramfort A, et al., 2011, Scikit-  55.  Deng D, Moverare J, Peng RL, et al., 2017, Microstructure and
               learn: Machine learning in python. JMLR, 12: 2825–2830.  anisotropic  mechanical  properties  of  EBM  manufactured
                                                                  Inconel 718 and effects of post heat treatments. Mater Sci
            48.  Lee HJ, Kim HK, Hong HU, et al., 2019, Influence of the
               focus offset on the defects, microstructure, and mechanical   Eng A, 693: 151–163.
               properties of an Inconel 718 superalloy fabricated by electron      https://doi.org/10.1016/j.msea.2017.03.085
               beam additive manufacturing. J Alloys Comp, 781: 842–856.
                                                               56.  Kirka MM, Medina F, Dehoff R,  et  al., 2017, Mechanical
               https://doi.org/10.1016/j.jallcom.2018.12.070      behavior  of  post-processed  Inconel  718  manufactured
                                                                  through the electron beam melting process. Mater Sci Eng
            49.  Zhao Y, Aoyagi K, Daino Y,  et al., 2020, Significance of
               powder  feedstock  characteristics  in  defect  suppression   A, 680: 338–346.
               of additively manufactured Inconel 718. Addit Manuf,      https://doi.org/10.1016/j.msea.2016.10.069
               34: 101277.
                                                               57.  Goel S, Zaninelli E, Gundgire T, et al., 2021, Microstructure
               https://doi.org/10.1016/j.addma.2020.101277        evolution and mechanical response–based shortening of
                                                                  thermal post-treatment for electron beam melting (EBM)
            50.  Chauvet  E,  Kontis  P,  Jägle  EA,  et al.,  2018,  Hot  cracking
               mechanism affecting a non-weldable Ni-based superalloy   produced Alloy 718. Mater Sci Eng A, 820: 141515.
               produced by selective electron Beam Melting. Acta Mater,      https://doi.org/10.1016/j.msea.2021.141515



















            Volume 1 Issue 4 (2022)                         16                    https://doi.org/10.18063/msam.v1i4.23
   34   35   36   37   38   39   40   41   42   43   44