Page 37 - MSAM-1-4
P. 37

Materials Science in Additive Manufacturing                       Process optimization of SEBM IN718 via ML


            Writing – review & editing: Heng Dong, Liming Tan, Lan   11.  Raab SJ, Guschlbauer R, Lodes MA, et al., 2016, Thermal and
               Huang, Xiaochao Jin                                electrical conductivity of 99.9% pure copper processed via
            All authors have read and agreed to the published version   selective electron beam melting . Adv Eng Mater, 18: 1661–
               of the manuscript.                                 1666.
                                                                  https://doi.org/10.1002/adem.201600078
            References
                                                               12.  Yang G, Yang P, Yang K, et al., 2019, Effect of processing
            1.   Herzog  D,  Seyda  V,  Wycisk  E,  et al.,  2016,  Additive   parameters on the density, microstructure and strength of
               manufacturing of metals. Acta Materialia, 117: 371–392.   pure tungsten fabricated by selective electron beam melting.
               https://doi.org/10.1016/j.actamat.2016.07.019      Int J Refract Metals Hard Mater, 84: 105040.
            2.   Sanchez S, Smith P, Xu Z, et al., 2021, Powder Bed Fusion of      https://doi.org/10.1016/j.ijrmhm.2019.105040
               nickel–based superalloys: A review. Int J Mach Tools Manuf,   13.  Bond DM, Zikry MA, 2020, Effects of electron beam
               165: 103729.                                       manufacturing induced defects on fracture in Inconel 718.
               https://doi.org/10.1016/j.ijmachtools.2021.103729  Addit Manuf, 32: 101059.
            3.   Ang YT, Sing SL, Lim JC, 2022, Process study for directed      https://doi.org/10.1016/j.addma.2020.101059
               energy deposition of 316L stainless steel with TiB2 metal   14.  Cunningham R, Narra SP, Ozturk T, et al., 2016, Evaluating
               matrix composites. Mater Sci Addit Manuf, 1: 13.   the effect of processing parameters on porosity in
               https://doi.org/10.18063/msam.v1i2.13              electron beam melted Ti-6Al-4V via synchrotron X-ray
                                                                  microtomography. J Miner Metals Mater Soc, 68: 765–771.
            4.   Körner C, 2016, Additive manufacturing of metallic
               components by selective electron beam melting–a review.      https://doi.org/10.1007/s11837-015-1802-0
               Int Mater Rev, 61: 361–377.                     15.  Ding X, Koizumi Y, Aoyagi K, et al., 2019, Microstructural
               https://doi.org/10.1080/09506608.2016.1176289      control of alloy 718 fabricated by electron beam melting with
                                                                  expanded processing window by  adaptive offset method.
            5.   He M, Ni Y, Wang S, 2021, On the microstructure and tensile   Mater Sci Eng A, 764: 138058.
               properties of Inconel 718 alloy fabricated by selective laser
               melting and conventional casting.  J  Micromech Mol Phys,      https://doi.org/10.1016/j.msea.2019.138058
               6: 2141003.                                     16.  Chandra S, Tan X, Narayan RL, et al., 2021, A generalised
               https://doi.org/10.1142/s2424913021410034          hot cracking criterion for nickel-based superalloys additively
                                                                  manufactured by electron beam melting. Addit Manuf,
            6.   Hashemi SM, Parvizi S, Baghbanijavid H,  et al., 2021,   37:101633.
               Computational  modelling  of  process–structure–property–
               performance relationships in metal additive manufacturing:      https://doi.org/10.1016/j.addma.2020.101633
               A review. Int Mater Rev, 67: 1–46.              17.  Deng D, Peng RL, Söderberg H, et al., 2018, On the formation
               https://doi.org/10.1080/09506608.2020.1868889      of microstructural gradients in a nickel-base superalloy
                                                                  during electron beam melting. Mater Des, 160: 251–261.
            7.   Sochalski–Kolbus LM, Payzant EA, Cornwell PA,  et al.,
               2015, Comparison of residual stresses in inconel 718 simple      https://doi.org/10.1016/j.matdes.2018.09.006
               parts made by electron beam melting and direct laser metal   18.  Deng D, Peng RL, Brodin H, et al., 2018, Microstructure and
               sintering. Metall Mater Trans A, 46: 1419–1432.    mechanical properties of Inconel 718 produced by selective
               https://doi.org/10.1007/s11661–014–2722–2          laser melting: Sample orientation dependence and effects of
                                                                  post heat treatments. Mater Sci Eng A, 713: 294–306.
            8.   Leung CL, Tosi R, Muzangaza E,  et al., 2019, Effect of
               preheating on the thermal, microstructural and mechanical      https://doi.org/10.1016/j.msea.2017.12.043
               properties of selective electron beam melted Ti-6Al-4V   19.  Chandra S, Tan X, Narayan RL,  et al., 2021, Nanometer-
               components. Mater Des 174: 107792.
                                                                  scale precipitations in a selective electron beam melted
               https://doi.org/10.1016/j.matdes.2019.107792       nickel-based superalloy. Scr Mater, 194: 113661.
            9.   Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V      https://doi.org/10.1016/j.scriptamat.2020.113661
               alloy: A review. Mater Des, 164: 107552.        20.  Polonsky AT, Echlin MP, Lenthe WC, et al., 2018, Defects and
               https://doi.org/10.1016/j.matdes.2018.107552       3D structural inhomogeneity in electron beam additively
                                                                  manufactured Inconel 718. Mater Char, 143: 171–181.
            10.  Hosseini E, Popovich VA, 2019, A review of mechanical
               properties of additively manufactured Inconel 718.  Addit      https://doi.org/10.1016/j.matchar.2018.02.020
               Manuf, 30: 100877.
                                                               21.  Goel S, Zaninelli E, Gårdstam J, et al., 2020, Microstructure
               https://doi.org/10.1016/j.addma.2019.100877        evolution-based design of thermal post-treatments for


            Volume 1 Issue 4 (2022)                         14                    https://doi.org/10.18063/msam.v1i4.23
   32   33   34   35   36   37   38   39   40   41   42