Page 37 - MSAM-1-4
P. 37
Materials Science in Additive Manufacturing Process optimization of SEBM IN718 via ML
Writing – review & editing: Heng Dong, Liming Tan, Lan 11. Raab SJ, Guschlbauer R, Lodes MA, et al., 2016, Thermal and
Huang, Xiaochao Jin electrical conductivity of 99.9% pure copper processed via
All authors have read and agreed to the published version selective electron beam melting . Adv Eng Mater, 18: 1661–
of the manuscript. 1666.
https://doi.org/10.1002/adem.201600078
References
12. Yang G, Yang P, Yang K, et al., 2019, Effect of processing
1. Herzog D, Seyda V, Wycisk E, et al., 2016, Additive parameters on the density, microstructure and strength of
manufacturing of metals. Acta Materialia, 117: 371–392. pure tungsten fabricated by selective electron beam melting.
https://doi.org/10.1016/j.actamat.2016.07.019 Int J Refract Metals Hard Mater, 84: 105040.
2. Sanchez S, Smith P, Xu Z, et al., 2021, Powder Bed Fusion of https://doi.org/10.1016/j.ijrmhm.2019.105040
nickel–based superalloys: A review. Int J Mach Tools Manuf, 13. Bond DM, Zikry MA, 2020, Effects of electron beam
165: 103729. manufacturing induced defects on fracture in Inconel 718.
https://doi.org/10.1016/j.ijmachtools.2021.103729 Addit Manuf, 32: 101059.
3. Ang YT, Sing SL, Lim JC, 2022, Process study for directed https://doi.org/10.1016/j.addma.2020.101059
energy deposition of 316L stainless steel with TiB2 metal 14. Cunningham R, Narra SP, Ozturk T, et al., 2016, Evaluating
matrix composites. Mater Sci Addit Manuf, 1: 13. the effect of processing parameters on porosity in
https://doi.org/10.18063/msam.v1i2.13 electron beam melted Ti-6Al-4V via synchrotron X-ray
microtomography. J Miner Metals Mater Soc, 68: 765–771.
4. Körner C, 2016, Additive manufacturing of metallic
components by selective electron beam melting–a review. https://doi.org/10.1007/s11837-015-1802-0
Int Mater Rev, 61: 361–377. 15. Ding X, Koizumi Y, Aoyagi K, et al., 2019, Microstructural
https://doi.org/10.1080/09506608.2016.1176289 control of alloy 718 fabricated by electron beam melting with
expanded processing window by adaptive offset method.
5. He M, Ni Y, Wang S, 2021, On the microstructure and tensile Mater Sci Eng A, 764: 138058.
properties of Inconel 718 alloy fabricated by selective laser
melting and conventional casting. J Micromech Mol Phys, https://doi.org/10.1016/j.msea.2019.138058
6: 2141003. 16. Chandra S, Tan X, Narayan RL, et al., 2021, A generalised
https://doi.org/10.1142/s2424913021410034 hot cracking criterion for nickel-based superalloys additively
manufactured by electron beam melting. Addit Manuf,
6. Hashemi SM, Parvizi S, Baghbanijavid H, et al., 2021, 37:101633.
Computational modelling of process–structure–property–
performance relationships in metal additive manufacturing: https://doi.org/10.1016/j.addma.2020.101633
A review. Int Mater Rev, 67: 1–46. 17. Deng D, Peng RL, Söderberg H, et al., 2018, On the formation
https://doi.org/10.1080/09506608.2020.1868889 of microstructural gradients in a nickel-base superalloy
during electron beam melting. Mater Des, 160: 251–261.
7. Sochalski–Kolbus LM, Payzant EA, Cornwell PA, et al.,
2015, Comparison of residual stresses in inconel 718 simple https://doi.org/10.1016/j.matdes.2018.09.006
parts made by electron beam melting and direct laser metal 18. Deng D, Peng RL, Brodin H, et al., 2018, Microstructure and
sintering. Metall Mater Trans A, 46: 1419–1432. mechanical properties of Inconel 718 produced by selective
https://doi.org/10.1007/s11661–014–2722–2 laser melting: Sample orientation dependence and effects of
post heat treatments. Mater Sci Eng A, 713: 294–306.
8. Leung CL, Tosi R, Muzangaza E, et al., 2019, Effect of
preheating on the thermal, microstructural and mechanical https://doi.org/10.1016/j.msea.2017.12.043
properties of selective electron beam melted Ti-6Al-4V 19. Chandra S, Tan X, Narayan RL, et al., 2021, Nanometer-
components. Mater Des 174: 107792.
scale precipitations in a selective electron beam melted
https://doi.org/10.1016/j.matdes.2019.107792 nickel-based superalloy. Scr Mater, 194: 113661.
9. Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V https://doi.org/10.1016/j.scriptamat.2020.113661
alloy: A review. Mater Des, 164: 107552. 20. Polonsky AT, Echlin MP, Lenthe WC, et al., 2018, Defects and
https://doi.org/10.1016/j.matdes.2018.107552 3D structural inhomogeneity in electron beam additively
manufactured Inconel 718. Mater Char, 143: 171–181.
10. Hosseini E, Popovich VA, 2019, A review of mechanical
properties of additively manufactured Inconel 718. Addit https://doi.org/10.1016/j.matchar.2018.02.020
Manuf, 30: 100877.
21. Goel S, Zaninelli E, Gårdstam J, et al., 2020, Microstructure
https://doi.org/10.1016/j.addma.2019.100877 evolution-based design of thermal post-treatments for
Volume 1 Issue 4 (2022) 14 https://doi.org/10.18063/msam.v1i4.23

