Page 38 - MSAM-1-4
P. 38
Materials Science in Additive Manufacturing Process optimization of SEBM IN718 via ML
EBM-built Alloy 718. J Mater Sci, 56: 5250–5268. Scr Mater, 178: 134–138.
https://doi.org/10.1007/s10853-020-05595-2 https://doi.org/10.1016/j.scriptamat.2019.11.019
22. Peng H, Shi Y, Gong S, et al., 2018, Microstructure, mechanical 32. Wen C, Zhang Y, Wang C, et al., 2019, Machine learning
properties and cracking behaviour in a y’-precipitation assisted design of high entropy alloys with desired property.
strengthened nickel-base superalloy fabricated by electron Acta Mater, 170: 109–117.
beam melting. Mater Des, 159: 155–169. https://doi.org/10.1016/j.actamat.2019.03.010
https://doi.org/10.1016/j.matdes.2018.08.054 33. Liu P, Huang H, Antonov S, et al., 2020, Machine learning
23. Gong H, Rafi K, Gu H, et al., 2014, Analysis of defect assisted design of γ’-strengthened Co-base superalloys with
generation in Ti-6Al-4V parts made using powder bed multi-performance optimization. NPJ Comput Mater, 6: 62.
fusion additive manufacturing processes. Addit Manuf, https://doi.org/10.1038/s41524-020-0334-5
1–4: 87–98.
34. Liu F, Xiao X, Huang L, et al., 2022, Design of NiCoCrAl
https://doi.org/10.1016/j.addma.2014.08.002 eutectic high entropy alloys by combining machine
24. Moussaoui K, Rubio W, Mousseigne M, et al., 2018, Effects of learning with CALPHAD method. Mater Today Commun,
Selective Laser Melting Additive manufacturing parameters 30: 103172.
of Inconel 718 on porosity, microstructure and mechanical https://doi.org/10.1016/j.mtcomm.2022.103172
properties. Mater Sci Eng A, 735: 182–190.
35. Liu F, Wang Z, Wang Z, et al., 2020, Evaluating yield strength
https://doi.org/10.1016/j.msea.2018.08.037 of Ni-based superalloys via high throughput experiment and
25. Helmer HE, Körner C, Singer RF, 2014, Additive machine learning. J Micromech Mol Phys, 5: 2050015.
manufacturing of nickel-based superalloy Inconel 718 by https://doi.org/10.1142/s2424913020500150
selective electron beam melting: Processing window and
microstructure. J Mater Res, 29: 1987–1996. 36. Gong X, Zeng D, Groeneveld-Meijer W, et al., 2022,
Additive manufacturing: A machine learning model of
https://doi.org/10.1557/jmr.2014.192 process-structure-property linkages for machining behavior
26. Rankouhi B, Agrawal AK, Pfefferkorn FE, et al., 2021, A of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6.
dimensionless number for predicting universal processing https://doi.org/10.18063/msam.v1i1.6
parameter boundaries in metal powder bed additive
manufacturing. Manuf Lett, 27: 13–17. 37. Liu Q, Wu H, Paul MJ, et al., 2020, Machine-learning
assisted laser powder bed fusion process optimization for
https://doi.org/10.1016/j.mfglet.2020.12.002 AlSi10Mg: New microstructure description indices and
27. Yan W, Qian Y, Ge W, et al., 2018, Meso-scale modeling fracture mechanisms. Acta Mater, 201: 316–328.
of multiple-layer fabrication process in Selective Electron https://doi.org/10.1016/j.actamat.2020.10.010
Beam Melting: Inter-layer/track voids formation. Mater Des,
141: 210–219. 38. Aoyagi K, Wang H, Sudo H, et al., 2019, Simple method to
construct process maps for additive manufacturing using a
https://doi.org/10.1016/j.matdes.2017.12.031 support vector machine. Addit Manuf, 27: 353–362.
28. Ammer R, Markl M, Ljungblad U, et al., 2014, Simulating https://doi.org/10.1016/j.addma.2019.03.013
fast electron beam melting with a parallel thermal free
surface lattice Boltzmann method. Comput Math Appl, 39. Lei Y, Aoyagi K, Cui Y, et al., 2020, Process optimization
67: 318–330. and mechanical property investigation of non-weldable
superalloy Alloy713ELC manufactured with selective
https://doi.org/10.1016/j.camwa.2013.10.001 electron beam melting. Mater Sci Eng A, 787: 139485.
29. Adhitan RK, Raghavan N, 2017, Transient thermo- https://doi.org/10.1016/j.msea.2020.139485
mechanical modeling of stress evolution and re-melt volume
fraction in electron beam additive manufacturing process. 40. Lei Y, Aoyagi K, Aota K, et al., 2021, Critical factor triggering
Proc Manuf, 11: 571–583. grain boundary cracking in non-weldable superalloy
Alloy713ELC fabricated with selective electron beam
https://doi.org/10.1016/j.promfg.2017.07.151 melting. Acta Mater, 208: 116695.
30. Liu F, Wang Z, Wang Z, et al., 2022, High-throughput https://doi.org/10.1016/j.actamat.2021.116695
method-accelerated design of Ni-based superalloys. Adv 41. Sah AK, Agilan M, Dineshraj S, et al., 2022, Machine
Funct Mater, 32: 2109367.
learning-enabled prediction of density and defects in
https://doi.org/10.1002/adfm.202109367 additively manufactured Inconel 718 alloy. Mater Today
Commun, 30: 103193.
31. Wang Z, Zhang L, Li W, et al., 2020, High throughput
experiment assisted discovery of new Ni-base superalloys. https://doi.org/10.1016/j.mtcomm.2022.103193
Volume 1 Issue 4 (2022) 15 https://doi.org/10.18063/msam.v1i4.23

