Page 38 - MSAM-1-4
P. 38

Materials Science in Additive Manufacturing                       Process optimization of SEBM IN718 via ML


               EBM-built Alloy 718. J Mater Sci, 56: 5250–5268.   Scr Mater, 178: 134–138.
               https://doi.org/10.1007/s10853-020-05595-2         https://doi.org/10.1016/j.scriptamat.2019.11.019
            22.  Peng H, Shi Y, Gong S, et al., 2018, Microstructure, mechanical   32.  Wen C, Zhang Y, Wang C, et al., 2019, Machine learning
               properties and cracking behaviour in a y’-precipitation   assisted design of high entropy alloys with desired property.
               strengthened nickel-base superalloy fabricated by electron   Acta Mater, 170: 109–117.
               beam melting. Mater Des, 159: 155–169.             https://doi.org/10.1016/j.actamat.2019.03.010
               https://doi.org/10.1016/j.matdes.2018.08.054    33.  Liu P, Huang H, Antonov S, et al., 2020, Machine learning
            23.  Gong H, Rafi K, Gu H,  et al., 2014, Analysis of defect   assisted design of γ’-strengthened Co-base superalloys with
               generation in Ti-6Al-4V parts made using powder bed   multi-performance optimization. NPJ Comput Mater, 6: 62.
               fusion additive manufacturing processes. Addit Manuf,      https://doi.org/10.1038/s41524-020-0334-5
               1–4: 87–98.
                                                               34.  Liu F, Xiao X, Huang L, et al., 2022, Design of NiCoCrAl
               https://doi.org/10.1016/j.addma.2014.08.002        eutectic high entropy alloys by combining machine
            24.  Moussaoui K, Rubio W, Mousseigne M, et al., 2018, Effects of   learning with CALPHAD method. Mater Today Commun,
               Selective Laser Melting Additive manufacturing parameters   30: 103172.
               of Inconel 718 on porosity, microstructure and mechanical      https://doi.org/10.1016/j.mtcomm.2022.103172
               properties. Mater Sci Eng A, 735: 182–190.
                                                               35.  Liu F, Wang Z, Wang Z, et al., 2020, Evaluating yield strength
               https://doi.org/10.1016/j.msea.2018.08.037         of Ni-based superalloys via high throughput experiment and
            25.  Helmer HE, Körner C, Singer RF, 2014, Additive   machine learning. J Micromech Mol Phys, 5: 2050015.
               manufacturing of nickel-based superalloy Inconel 718 by      https://doi.org/10.1142/s2424913020500150
               selective electron beam melting: Processing window and
               microstructure. J Mater Res, 29: 1987–1996.     36.  Gong X, Zeng D, Groeneveld-Meijer W,  et  al., 2022,
                                                                  Additive manufacturing: A  machine learning model of
               https://doi.org/10.1557/jmr.2014.192               process-structure-property linkages for machining behavior
            26.  Rankouhi  B,  Agrawal  AK,  Pfefferkorn FE,  et al.,  2021,  A   of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6.
               dimensionless number for predicting universal processing      https://doi.org/10.18063/msam.v1i1.6
               parameter boundaries in  metal  powder  bed  additive
               manufacturing. Manuf Lett, 27: 13–17.           37.  Liu Q, Wu H, Paul MJ,  et al., 2020, Machine-learning
                                                                  assisted laser powder bed fusion process optimization for
               https://doi.org/10.1016/j.mfglet.2020.12.002       AlSi10Mg: New microstructure description indices and
            27.  Yan W, Qian Y, Ge W,  et al., 2018, Meso-scale modeling   fracture mechanisms. Acta Mater, 201: 316–328.
               of multiple-layer  fabrication process  in Selective Electron      https://doi.org/10.1016/j.actamat.2020.10.010
               Beam Melting: Inter-layer/track voids formation. Mater Des,
               141: 210–219.                                   38.  Aoyagi K, Wang H, Sudo H, et al., 2019, Simple method to
                                                                  construct process maps for additive manufacturing using a
                https://doi.org/10.1016/j.matdes.2017.12.031      support vector machine. Addit Manuf, 27: 353–362.
            28.  Ammer R, Markl M, Ljungblad U, et al., 2014, Simulating      https://doi.org/10.1016/j.addma.2019.03.013
               fast electron beam melting with a parallel thermal free
               surface lattice Boltzmann method. Comput Math Appl,   39.  Lei Y, Aoyagi K, Cui Y, et al., 2020, Process optimization
               67: 318–330.                                       and mechanical property investigation of non-weldable
                                                                  superalloy Alloy713ELC manufactured with selective
                https://doi.org/10.1016/j.camwa.2013.10.001       electron beam melting. Mater Sci Eng A, 787: 139485.
            29.  Adhitan RK, Raghavan N, 2017, Transient thermo-     https://doi.org/10.1016/j.msea.2020.139485
               mechanical modeling of stress evolution and re-melt volume
               fraction in electron beam additive manufacturing process.   40.  Lei Y, Aoyagi K, Aota K, et al., 2021, Critical factor triggering
               Proc Manuf, 11: 571–583.                           grain  boundary  cracking  in  non-weldable  superalloy
                                                                  Alloy713ELC fabricated with selective electron beam
               https://doi.org/10.1016/j.promfg.2017.07.151       melting. Acta Mater, 208: 116695.
            30.  Liu F, Wang Z, Wang Z,  et al., 2022, High-throughput      https://doi.org/10.1016/j.actamat.2021.116695
               method-accelerated design of Ni-based superalloys. Adv   41.  Sah AK, Agilan M, Dineshraj S,  et al., 2022, Machine
               Funct Mater, 32: 2109367.
                                                                  learning-enabled prediction of density and defects in
               https://doi.org/10.1002/adfm.202109367             additively manufactured Inconel 718 alloy. Mater Today
                                                                  Commun, 30: 103193.
            31.  Wang Z, Zhang L, Li W,  et  al., 2020, High throughput
               experiment assisted discovery of new Ni-base superalloys.      https://doi.org/10.1016/j.mtcomm.2022.103193


            Volume 1 Issue 4 (2022)                         15                    https://doi.org/10.18063/msam.v1i4.23
   33   34   35   36   37   38   39   40   41   42   43