Page 59 - MSAM-2-1
P. 59

Materials Science in Additive Manufacturing                           Data imputation strategies of PBF Ti64



               Wiley and Sons Inc., New York.                     multiple imputation: an overview and case study. Emerging
                                                                  Themes Epidemiol, 14: 8.
               https://doi.org/10.1002/9780470316696
                                                                  https://doi.org/10.1186/s12982-017-0062-6
            31.  6.4. Imputation of Missing Values-scikit-learn 0.23.2
               Documentation. Available from: https://scikit-learn.org/  38.  Metelkova  J, Kinds  Y, Kempen  K,  et al., 2018,  On the
               stable/modules/impute.html#multiple-vs-singleimputation    influence of laser defocusing in Selective Laser melting of
               [Last accessed on 2020 Oct 05].                    316L. Addit Manuf, 23: 161–169.
            32.  Shah AD, Bartlett JW, Carpenter J, et al., 2014, Comparison      https://doi.org/10.1016/j.addma.2018.08.006
               of random forest and parametric imputation models for   39.  Slobodzian GE. White Paper-apples to Apples: Which Camera
               imputing missing data using MICE: A CALIBER study. Am   Technologies  Work Best  for Beam Profiling  Applications,
               J Epidemiol, 179: 764–774.
                                                                  Part 2: Baseline Methods and Mode Effects. Available from:
               https://doi.org/10.1093/aje/kwt312                 https://www.ophiropt.com/laser--measurement/knowledge-
                                                                  center/article/8065 [Last accessed on 2020 Oct 12].
            33.  Spinelli I, Scardapane S, Uncini A, 2020, Missing data
               imputation with adversarially-trained graph convolutional   40.  Kuruvilla M, Srivatsan TS, Petraroli M,  et  al., 2008,
               networks. Neural Netw, 129: 249–260.               An  investigation  of  microstructure,  hardness,  tensile
                                                                  behaviour of a titanium alloy: Role of orientation. Sadhana,
               https://doi.org/10.1016/j.neunet.2020.06.005
                                                                  33: 235–250.
            34.  Kohonen T, 1982, Self-organized formation of topologically      https://doi.org/10.1007/s12046-008-0017-2
               correct feature maps. Biol Cybern, 43: 59–69.
                                                               41.  Jiang PF, Zhang CH, Zhang S,  et al., 2021, Additive
               https://doi.org/10.1007/BF00337288
                                                                  manufacturing of novel ferritic stainless steel by selective
            35.  Moosavi V, Packmann S, Vallés I, 2014, SOMPY: A Python   laser melting: Role of laser scanning speed on the
               Library for Self Organizing Map (SOM). Available from:   formability, microstructure and properties.  Opt  Laser
               https://www.github.com/sevamoo/sompy [Last accessed on   Technol, 140: 107055.
               2020 Oct 05].
                                                                  https://doi.org/10.1016/j.optlastec.2021.107055
            36.  Qian J, Nguyen NP, Oya Y, et al., 2019, Introducing self-  42.  Wang Z, Xiao Z, Tse Y,  et al., 2019, Optimization of
               organized maps (SOM) as a visualization tool for materials   processing parameters and establishment of a relationship
               research and education. Results Mater, 4: 100020.
                                                                  between microstructure and mechanical properties of SLM
               https://doi.org/10.1016/j.rinma.2019.100020        titanium alloy. Opt Laser Technol, 112: 159–167.
            37.  Nguyen CD, Carlin JB, Lee KJ, 2017, Model checking in      https://doi.org/10.1016/j.optlastec.2018.11.014




































            Volume 2 Issue 1 (2023)                         18                       https://doi.org/10.36922/msam.50
   54   55   56   57   58   59   60   61   62   63   64