Page 58 - MSAM-2-1
P. 58
Materials Science in Additive Manufacturing Data imputation strategies of PBF Ti64
densities in the Selective Laser Melting technique. J Manuf learning in 3D printing: Applications, potential, and
Process, 35: 538–546. challenges. Artif Intell Rev, 54: 63–94.
https://doi.org/10.1016/j.jmapro.2018.09.012 https://doi.org/10.1007/s10462-020-09876-9
8. Gong H, Rafi K, Starr T, et al., 2013, The Effects of 19. Steiner S, Zeng Y, Young TM, et al., 2016, A study of missing
Processing Parameters on Defect Regularity in Ti-6Al-4V data imputation in predictive modeling of a wood-composite
Parts Fabricated by Selective Laser Melting and Electron manufacturing process. J Qual Technol, 48: 284–296.
Beam Melting. In: Conference 24 Annual International https://doi.org/10.1080/00224065.2016.11918167
th
Solid Freeform Fabrication Symposium.
20. Wang Y, Li K, Gan S, et al., 2019, Missing data imputation
9. Kasperovich G, Haubrich J, Gussone J, et al., 2016, with OLS-based autoencoder for intelligent manufacturing.
Correlation between porosity and processing parameters IEEE Trans Ind Appl, 55: 7219–7229.
in TiAl6V4 produced by selective laser melting. Mater Des,
105: 160–170. https://doi.org/10.1109/TIA.2019.2940585
https://doi.org/10.1016/j.matdes.2016.05.070 21. Andridge RR, Little RJ, 2010, A review of hot deck
imputation for survey non‐response. Int Stat Rev, 78: 40–64.
10. Ali H, Ma L, Ghadbeigi H, et al., 2017, In-situ residual stress
reduction, martensitic decomposition and mechanical https://doi.org/10.1111/j.1751-5823.2010.00103.x
properties enhancement through high temperature powder 22. Jadhav A, Pramod D, Ramanathan K, 2019, Comparison
bed pre-heating of Selective Laser Melted Ti6Al4V. Mater of performance of data imputation methods for numeric
Sci Eng A, 695: 211–220. dataset. Appl Artif Intell, 33: 913–933.
11. Vilaro T, Colin C, Bartout JD, 2011, As-fabricated and heat- https://doi.org/10.1080/08839514.2019.1637138
treated microstructures of the Ti-6Al-4V alloy processed by
selective laser melting. Metall Mater Trans A, 42: 3190–3199. 23. Altman NS, 1992, An introduction to Kernel and nearest-
neighbor nonparametric regression. Am Stat, 46: 175–185.
https://doi.org/10.1007/s11661-011-0731-y
https://doi.org/10.2307/2685209
12. Qiu C, Adkins NJ, Attallah MM, 2013, Microstructure and
tensile properties of selectively laser-melted and of HIPed 24. Imandoust SB, Bolandraftar M, 2013, Application of
laser-melted Ti-6Al-4V. Mater Sci Eng A, 578: 230–239. K-nearest neighbor (KNN) approach for predicting
economic events: Theoretical background. Int J Eng Res
https://doi.org/10.1016/j.msea.2013.04.099 Appl, 3: 605–610.
13. Xu Y, Zhang D, Guo Y, et al., 2020, Microstructural tailoring 25. Wilson DR, Martinez TR, 2000, Reduction techniques
of As-selective Laser melted Ti6Al4V alloy for high for instance-based learning algorithms. Mach Learn,
mechanical properties. J Alloys Compd, 816: 152536. 38: 257–286.
https://doi.org/10.1016/j.jallcom.2019.152536 https://doi.org/10.1023/A:1007626913721
14. Pal S, Gubeljak N, Hudak R, et al., 2019, Tensile 26. sklearn.impute.KNNImputer-scikit-learn 0.23.2
properties of selective laser melting products affected by documentation. Available from: https://scikit-learn.org/
building orientation and energy density. Mater Sci Eng A, stable/modules/generated/sklearn.impute.KNNImputer.
743: 637–647. html [Last accessed on 2020 Oct 05].
https://doi.org/10.1016/j.msea.2018.11.130 27. sklearn.metrics.pairwise.nan_euclidean_distances-scikit-
15. Sun J, Yang Y, Wang D, 2013, Parametric optimization of learn 0.23.2 documentation. Available from: https://
selective laser melting for forming Ti6Al4V samples by scikit-learn.org/stable/modules/generated/sklearn.metrics.
Taguchi method. Opt Laser Technol, 49: 118–124. pairwise.nan_euclidean_distances.html [Last accessed on
2020 Oct 05].
https://doi.org/10.1016/j.optlastec.2012.12.002
28. Van Buuren S, Groothuis-Oudshoorn K, 2010, Mice:
16. Bartolomeu F, Faria S, Pinto E, et al., 2016, Predictive models Multivariate imputation by chained equations in R. J Stat
for physical and mechanical properties of Ti6Al4V produced Softw, 45: 1–67.
by Selective Laser Melting. Mater Sci Eng A, 663: 181–192.
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1016/j.msea.2016.03.113
29. Azur MJ, Stuart EA, Frangakis C, et al., 2011, Multiple
17. Fotovvati B, Namdari N, Dehghanghadikolaei A, 2018, imputation by chained equations: What is it and how does it
Fatigue performance of selective laser melted Ti6Al4V work? Int J Methods Psychiatr Res, 20: 40–49.
components: State of the art. Mater Res Express, 6: 012002.
https://doi.org/10.1002/mpr.329
https://doi.org/10.1088/2053-1591/aae10e
30. Rubin DB, 1987, Multiple Imputation for Nonresponse in
18. Goh GD, Sing SL, Yeong WY, 2020, A review on machine Surveys (Wiley Series in Probability and Statistics). John
Volume 2 Issue 1 (2023) 17 https://doi.org/10.36922/msam.50

