Page 101 - MSAM-2-4
P. 101
Materials Science in Additive Manufacturing 3D-printed composite auxetic structures
Conflict of interest 8. Saxena KK, Das R, Calius EP, 2016, Three decades of auxetics
research - materials with negative poisson’s ratio: A review.
The authors declare they have no competing interests. Adv Eng Mater, 18: 1847–1870.
Author contributions https://doi.org/10.1002/adem.201600053
Conceptualization: Jikai Liu, Peiqing Liu 9. Novak N, Vesenjak M, Ren Z, 2016, Auxetic cellular
Formal analysis: Peiqing Liu materials - a review. Strojniški Vestn J Mech Eng, 62: 485–493.
Investigation: Peiqing Liu https://doi.org/10.5545/sv-jme.2016.3656
Methodology: Peiqing Liu, Jikai Liu 10. Pissarenko A, Yang W, Quan H, et al., 2019, Tensile behavior
Writing – original draft: Peiqing Liu and structural characterization of pig dermis. Acta Biomater,
Writing – review & editing: Peiqing Liu, Jikai Liu 86: 77–95.
Ethics approval and consent to participate https://doi.org/10.1016/j.actbio.2019.01.023
11. Balan PM, Mertens AJ, Bahubalendruni MVAR, 2023,
Not applicable. Auxetic mechanical metamaterials and their futuristic
Consent for publication developments: A state-of-art review. Mater Today Commun,
34: 105285.
Not applicable. https://doi.org/10.1016/j.mtcomm.2022.105285
Availability of data 12. Kolken HMA, Zadpoor AA, 2017, Auxetic mechanical
metamaterials. RSC Adv, 7: 5111–5129.
Data will be made available upon request.
https://doi.org/10.1039/C6RA27333E
References 13. Jin Y, Xie C, Gao Q, et al., 2021, Fabrication of multi-scale
1. Sanami M, Ravirala N, Alderson K, et al., 2014, Auxetic and tunable auxetic scaffolds for tissue engineering. Mater
materials for sports applications. Procedia Eng, 72: 453–458. Des, 197: 109277.
https://doi.org/10.1016/j.matdes.2020.109277
https://doi.org/10.1016/j.proeng.2014.06.079
2. Choi JB, Lakes RS, 1995, Nonlinear analysis of the poissons 14. Zheng X, Guo X, Watanabe I, 2021, A mathematically
ratio of negative poissons ratio foams. J Compos Mater, defined 3D auxetic metamaterial with tunable mechanical
29: 113–128. and conduction properties. Mater Des, 198: 109313.
https://doi.org/10.1016/j.matdes.2020.109313
https://doi.org/10.1177/002199839502900106
15. Fozdar DY, Soman P, Lee JW, et al., 2011, Three‐dimensional
3. Lakes R, 1987, Foam structures with a negative poisson’s
ratio. Science, 235: 1038–1040. polymer constructs exhibiting a tunable negative poisson’s
ratio. Adv Funct Mater, 21: 2712–2720.
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1002/adfm.201002022
4. Donoghue JP, Alderson KL, Evans KE, 2009, The fracture
toughness of composite laminates with a negative Poisson’s 16. Xue Y, Wang W, Han F, 2019, Enhanced compressive
ratio. Phys Status Solidi, 246: 2011–2017. mechanical properties of aluminum based auxetic
lattice structures filled with polymers. Compos B Eng,
https://doi.org/10.1002/pssb.200982031 171: 183–191.
5. Zhang XG, Ren X, Jiang W, et al., 2022, A novel auxetic https://doi.org/10.1016/j.compositesb.2019.05.002
chiral lattice composite: Experimental and numerical study. 17. Hu C, Dong J, Luo J, et al., 2020, 3D printing of chiral carbon
Compos Struct, 282: 115043.
fiber reinforced polylactic acid composites with negative
https://doi.org/10.1016/j.compstruct.2021.115043 Poisson’s ratios. Compos B Eng, 201: 108400.
6. Wang Z, Zulifqar A, Hu H, 2016, Auxetic composites in https://doi.org/10.1016/j.compositesb.2020.108400
aerospace engineering. In: Advanced Composite Materials 18. Tian X, Todoroki A, Liu T, et al., 2022, 3D printing
for Aerospace Engineering. Netherlands: Elsevier, of continuous fiber reinforced polymer composites:
pp. 213–240.
Development, application, and prospective. Chin J Mech Eng
https://doi.org/10.1016/B978-0-08-100037-3.00007-9 Addit Manuf Front, 1: 100016.
7. Bhullar SK, 2013, Influence of negative poisson’s ratio on https://doi.org/10.1016/j.cjmeam.2022.100016
stent applications. Adv Mater, 2: 42.
19. Cheng P, Peng Y, Li S, et al., 2023, 3D printed continuous
https://doi.org/10.11648/j.am.20130203.14 fiber reinforced composite lightweight structures: A review
Volume 2 Issue 4 (2023) 11 https://doi.org/10.36922/msam.2159

