Page 101 - MSAM-2-4
P. 101

Materials Science in Additive Manufacturing                          3D-printed composite auxetic structures



            Conflict of interest                               8.   Saxena KK, Das R, Calius EP, 2016, Three decades of auxetics
                                                                  research - materials with negative poisson’s ratio: A review.
            The authors declare they have no competing interests.  Adv Eng Mater, 18: 1847–1870.
            Author contributions                                  https://doi.org/10.1002/adem.201600053

            Conceptualization: Jikai Liu, Peiqing Liu          9.   Novak N, Vesenjak M, Ren Z, 2016, Auxetic cellular
            Formal analysis: Peiqing Liu                          materials - a review. Strojniški Vestn J Mech Eng, 62: 485–493.
            Investigation: Peiqing Liu                            https://doi.org/10.5545/sv-jme.2016.3656
            Methodology: Peiqing Liu, Jikai Liu                10.  Pissarenko A, Yang W, Quan H, et al., 2019, Tensile behavior
            Writing – original draft: Peiqing Liu                 and structural characterization of pig dermis. Acta Biomater,
            Writing – review & editing: Peiqing Liu, Jikai Liu    86: 77–95.

            Ethics approval and consent to participate            https://doi.org/10.1016/j.actbio.2019.01.023
                                                               11.  Balan PM, Mertens AJ, Bahubalendruni MVAR, 2023,
            Not applicable.                                       Auxetic mechanical metamaterials and their futuristic

            Consent for publication                               developments: A state-of-art review. Mater Today Commun,
                                                                  34: 105285.
            Not applicable.                                       https://doi.org/10.1016/j.mtcomm.2022.105285

            Availability of data                               12.  Kolken HMA, Zadpoor AA, 2017, Auxetic mechanical
                                                                  metamaterials. RSC Adv, 7: 5111–5129.
            Data will be made available upon request.
                                                                  https://doi.org/10.1039/C6RA27333E
            References                                         13.  Jin Y, Xie C, Gao Q, et al., 2021, Fabrication of multi-scale
            1.   Sanami  M,  Ravirala  N,  Alderson  K,  et al.,  2014,  Auxetic   and tunable auxetic scaffolds for tissue engineering. Mater
               materials for sports applications. Procedia Eng, 72: 453–458.   Des, 197: 109277.
                                                                  https://doi.org/10.1016/j.matdes.2020.109277
               https://doi.org/10.1016/j.proeng.2014.06.079
            2.   Choi JB, Lakes RS, 1995, Nonlinear analysis of the poissons   14.  Zheng X, Guo X, Watanabe I, 2021, A mathematically
               ratio of negative poissons ratio foams.  J  Compos Mater,   defined 3D auxetic metamaterial with tunable mechanical
               29: 113–128.                                       and conduction properties. Mater Des, 198: 109313.
                                                                  https://doi.org/10.1016/j.matdes.2020.109313
               https://doi.org/10.1177/002199839502900106
                                                               15.  Fozdar DY, Soman P, Lee JW, et al., 2011, Three‐dimensional
            3.   Lakes R, 1987, Foam structures with a negative poisson’s
               ratio. Science, 235: 1038–1040.                    polymer constructs exhibiting a tunable negative poisson’s
                                                                  ratio. Adv Funct Mater, 21: 2712–2720.
               https://doi.org/10.1126/science.235.4792.1038
                                                                  https://doi.org/10.1002/adfm.201002022
            4.   Donoghue JP, Alderson KL, Evans KE, 2009, The fracture
               toughness of composite laminates with a negative Poisson’s   16.  Xue  Y,  Wang  W,  Han  F,  2019,  Enhanced  compressive
               ratio. Phys Status Solidi, 246: 2011–2017.         mechanical properties of aluminum based auxetic
                                                                  lattice structures filled with polymers.  Compos B Eng,
               https://doi.org/10.1002/pssb.200982031             171: 183–191.
            5.   Zhang XG, Ren X, Jiang W,  et al., 2022, A novel auxetic      https://doi.org/10.1016/j.compositesb.2019.05.002
               chiral lattice composite: Experimental and numerical study.   17.  Hu C, Dong J, Luo J, et al., 2020, 3D printing of chiral carbon
               Compos Struct, 282: 115043.
                                                                  fiber reinforced polylactic acid composites with negative
               https://doi.org/10.1016/j.compstruct.2021.115043   Poisson’s ratios. Compos B Eng, 201: 108400.
            6.   Wang Z, Zulifqar A, Hu H, 2016, Auxetic composites in      https://doi.org/10.1016/j.compositesb.2020.108400
               aerospace engineering. In: Advanced Composite Materials   18.  Tian X, Todoroki A, Liu T,  et al., 2022, 3D printing
               for Aerospace Engineering. Netherlands: Elsevier,   of continuous fiber reinforced polymer composites:
               pp. 213–240.
                                                                  Development, application, and prospective. Chin J Mech Eng
               https://doi.org/10.1016/B978-0-08-100037-3.00007-9  Addit Manuf Front, 1: 100016.
            7.   Bhullar SK, 2013, Influence of negative poisson’s ratio on      https://doi.org/10.1016/j.cjmeam.2022.100016
               stent applications. Adv Mater, 2: 42.
                                                               19.  Cheng P, Peng Y, Li S, et al., 2023, 3D printed continuous
               https://doi.org/10.11648/j.am.20130203.14          fiber reinforced composite lightweight structures: A review


            Volume 2 Issue 4 (2023)                         11                      https://doi.org/10.36922/msam.2159
   96   97   98   99   100   101   102   103   104