Page 117 - MSAM-3-4
P. 117

Materials Science in Additive Manufacturing                           Bistable 3D-printed compliant structure



               topology optimization.  Struct Multidiscipl Optimiz.   16.  Shan S, Kang SH, Raney JR, et al. Multistable architected
               2018;58(4):1395-1410.                              materials for trapping elastic strain energy.  Adv  Mater.
               doi: 10.1007/s00158-018-1970-y                     2015;27(29):4296-4301.
            4.   Wu C, Peng C, Le TC, Das R, Tran P. Tunable 3D printed      doi: 10.1002/adma.201501708
               composite metamaterials with negative stiffness.  Smart   17.  Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J,
               Mater Struct. 2023;32(12):125010.                  Valdevit L. Multistable  shape-reconfigurable architected
               doi: 10.1088/1361-665X/ad06df                      materials. Adv Mater. 2016;28(36):7915-7920.
            5.   Yang H, Ma L. Multi-stable mechanical metamaterials with      doi: 10.1002/adma.201601650
               shape-reconfiguration and zero Poisson’s ratio. Mater Des.   18.  Diaconu CG, Weaver PM, Mattioni F. Concepts for morphing
               2018;152:181-190.                                  airfoil sections using bi-stable laminated composite
               doi: 10.1016/j.matdes.2018.04.064                  structures. Thin-Walled Struct. 2008;46(6):689-701.
            6.   Lehto M, Bodén R.  A  Multi-Stable Miniature Paraffin      doi: 10.1016/j.tws.2007.11.002
               Actuator. In: Proceedin Actuator 11  International Conference   19.  Hu N, Burgueño R. Buckling-induced smart applications:
                                        th
               on New Actuators; 2008. p. 864-867.                Recent advances and trends.  Smart Mater Struct.
            7.   Bertoldi K, Vitelli V, Christensen J, van Hecke M. Flexible   2015;24(6):063001.
               mechanical metamaterials. Nat Rev Mater. 2017;2(11):1-11.     doi: 10.1088/0964-1726/24/6/063001
               doi: 10.1038/natrevmats.2017.66                 20.  Pontecorvo ME, Barbarino S, Murray GJ, Gandhi FS.
            8.   Correa DM, Klatt T, Cortes S, Haberman M, Kovar D,   Bistable arches for morphing applications. J Intell Mater Syst
               Seepersad C. Negative stiffness honeycombs for recoverable   Struct. 2012;24(3):274-286.
               shock isolation. Rapid Prototyp J. 2015;21(2):193-200.     doi: 10.1177/1045389x12457252
               doi: 10.1108/rpj-12-2014-0182
                                                               21.  Cao Y, Derakhshani M, Fang Y, Huang G, Cao C. Bistable
            9.   Peng C, Marzocca P, Tran P. Triply periodic minimal surfaces   structures for advanced functional systems.  Adv Funct
               based honeycomb structures with tuneable mechanical   Mater. 2021;31(45):2106231.
               responses. Virtual Phys Prototyp. 2022;18(1):e2125879.
                                                                  doi: 10.1002/adfm.202106231
               doi: 10.1080/17452759.2022.2125879
                                                               22.  Peng  C,  Tran  P,  Lalor  S,  Tirosh  O,  Rutz  E.  Tuning  the
            10.  Peng C, Tran P, Rutz E. Accelerating hybrid lattice structures   mechanical responses of 3D-printed ankle-foot orthoses:
               design with machine learning.  Mater Sci Addit Manuf.   A numerical study. Int J Bioprinting. 2024;10(3):3390.
               2024;3(2):3430.
                                                                  doi: 10.36922/ijb.3390
               doi: 10.36922/msam.3430
                                                               23.  Vangbo M. An analytical analysis of a compressed bistable
            11.  Correa DM, Seepersad CC, Haberman MR. Mechanical   buckled beam. Sensors Actuat A Phys. 1998;69(3):212-216.
               design of negative stiffness honeycomb materials.  Integr
               Mater Manuf Innov. 2015;4(1):165-175.              doi: 10.1016/s0924-4247(98)00097-1
               doi: 10.1186/s40192-015-0038-8                  24.  Qiu J, Lang JH, Slocum AH. A  curved-beam bistable
                                                                  mechanism. J Microelectromechanical Syst. 2004;13(2):137-146.
            12.  Debeau D, Seepersad C. Additively Manufactured Conformal
               Negative Stiffness Honeycombs. United States: University of      doi: 10.1109/jmems.2004.825308
               Texas at Austin; 2017.                          25.  Mehreganian N, Fallah AS, Sareh P. Structural mechanics of
            13.  Chen S, Wang B, Zhu S, et al. A novel composite negative   negative stiffness honeycomb metamaterials. J Appl Mechan.
               stiffness structure for recoverable trapping energy. Compos   2021;88(5):1-18.
               Part A Appl Sci Manuf. 2020;129:105697.            doi: 10.1115/1.4049954
               doi: 10.1016/j.compositesa.2019.105697          26.  Cazottes P, Fernandes A, Pouget J, Hafez M. Bistable buckled
            14.  Restrepo D, Mankame ND, Zavattieri PD. Phase transforming   beam: Modeling of actuating force and experimental
               cellular materials. Extreme Mech Lett. 2015;4:52-60.  validations. J Mechan Des. 2009;131(10):10100.
               doi: 10.1016/j.eml.2015.08.001                     doi: 10.1115/1.3179003
            15.  Rafsanjani A, Akbarzadeh A, Pasini D. Snapping   27.  Cleary J, Su HJ. Modeling and experimental validation of
               mechanical metamaterials under tension. Adv Mater. 2015;   actuating a bistable buckled beam via moment input. J Appl
               27(39):5931-5935.                                  Mechan. 2015;82(5):051005.
               doi: 10.1002/adma.201502809                        doi: 10.1115/1.4030074


            Volume 3 Issue 4 (2024)                         16                             doi: 10.36922/msam.4960
   112   113   114   115   116   117   118   119   120