Page 25 - MSAM-4-1
P. 25
Materials Science in Additive Manufacturing Natural composite filaments for 3D-Print
based on additive manufacturing routes and biodegradability 86. Petchwattana N, Channuan W, Naknaen P, Narupai B. 3D
perspective. Mater Today Proc. 2022;62:131-135. printing filaments prepared from modified poly (Lactic
Acid)/teak wood flour composites: An investigation
doi: 10.1016/j.matpr.2022.02.607
on the particle size effects and silane coupling agent
76. Zhao DX, Cai X, Shou GZ, Gu YQ, Wang PX. Study on the compatibilisation. J Phys Sci. 2019;30(2):169-188.
preparation of bamboo plastic composite intend for additive
manufacturing. Key Eng Mater. 2015;667:250-258. doi: 10.21315/jps2019.30.2.10
87. Panda B, Paul SC, Hui LJ, Tay YWD, Tan MJ. Additive
doi: 10.4028/www.scientific.net/KEM.667.250
manufacturing of geopolymer for sustainable built
77. Gao X, Qi S, Yang B, Su Y, Li J, Wang D. Synergistic effect of environment. J Clean Prod. 2017;167:281-288.
plasticizer and nucleating agent on crystallization behavior doi: 10.1016/j.jclepro.2017.08.165
of polylactide during fused filament fabrication. Polymer.
2021;215:123426. 88. Xiao J, Liu H, Ding T. Finite element analysis on the
anisotropic behavior of 3D printed concrete under
doi: 10.1016/j.polymer.2021.123426
compression and flexure. Addit Manuf. 2021;39:101712.
78. Osman MA, Atia MRA. Investigation of ABS-rice straw doi: 10.1016/j.addma.2020.101712
composite feedstock filament for FDM. Rapid Prototyp J.
2018;24(6):1067-1075. 89. Zareiyan B, Khoshnevis B. Interlayer adhesion and strength
of structures in contour crafting - effects of aggregate
doi: 10.1108/RPJ-11-2017-0242 size, extrusion rate, and layer thickness. Autom Constr.
79. Depuydt D, Balthazar M, Hendrickx K, et al. Production 2017;81:112-121.
and characterization of bamboo and flax fiber reinforced doi: 10.1016/j.autcon.2017.06.013
polylactic acid filaments for fused deposition modeling
(FDM). Polym Compos. 2019;40(5):1951-1963. 90. Sundar D, Narasimalu S, Yaowen Y, Sharma S. Opportunities
for Natural Fiber Reinforced Composites towards Tropical
doi: 10.1002/pc.24971 wind Turbine Material Needs. In: 2017 Asian Conference on
80. Liu H, He H, Peng X, Huang B, Li J. Three‐dimensional Energy, Power and Transportation Electrification (ACEPT).
printing of poly(lactic acid) bio‐based composites with IEEE; 2017. p. 1-7.
sugarcane bagasse fiber: Effect of printing orientation on doi: 10.1109/ACEPT.2017.8168549
tensile performance. Polym Adv Technol. 2019;30(4):910-922.
91. Venkateshwaran N, Elayaperumal A, Sathiya GK. Prediction
doi: 10.1002/pat.4524 of tensile properties of hybrid-natural fiber composites.
81. Ahmad MN, Wahid MK, Maidin NA, Ab Rahman MH, Compos B Eng. 2012;43(2):793-796.
Osman MH, Alis@Elias IF. Mechanical characteristics of oil doi: 10.1016/j.compositesb.2011.08.023
palm fiber reinforced thermoplastics as filament for Fused
Deposition Modeling (FDM). Adv Manuf. 2020;8(1):72-81. 92. Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT,
Chinga-Carrasco G. Enzymatic-assisted modification of
doi: 10.1007/s40436-019-00287-w thermomechanical pulp fibers to improve the interfacial
82. Torrado Perez AR, Roberson DA, Wicker RB. Fracture adhesion with poly(lactic acid) for 3D printing. ACS Sustain
surface analysis of 3D-Printed tensile specimens of novel Chem Eng. 2017;5(10):9338-9346.
ABS-based materials. J Fail Anal Preven. 2014;14(3):343-353. doi: 10.1021/acssuschemeng.7b02351
doi: 10.1007/s11668-014-9803-9 93. Nguyen NA, Bowland CC, Naskar AK. A general method to
83. Jahangir MN, Billah KMM, Lin Y, Roberson DA, Wicker RB, improve 3D-printability and inter-layer adhesion in lignin-
Espalin D. Reinforcement of material extrusion 3D printed based composites. Appl Mater Today. 2018;12:138-152.
polycarbonate using continuous carbon fiber. Addit Manuf. doi: 10.1016/j.apmt.2018.03.009
2019;28:354-364.
94. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of
doi: 10.1016/j.addma.2019.05.019 polymer matrix composites: A review and prospective.
84. Bi X, Huang R. 3D printing of natural fiber and composites: Compos B Eng. 2017;110:442-458.
A state-of-the-art review. Mater Des. 2022;222:111065. doi: 10.1016/j.compositesb.2016.11.034
doi: 10.1016/j.matdes.2022.111065 95. Le Duigou A, Barbé A, Guillou E, Castro M. 3D printing of
85. Xu W, Pranovich A, Uppstu P, et al. Novel biorenewable continuous flax fibre reinforced biocomposites for structural
composite of wood polysaccharide and polylactic acid for applications. Mater Des. 2019;180:107884.
three dimensional printing. Carbohydr Polym. 2018;187:51-58. doi: 10.1016/j.matdes.2019.107884
doi: 10.1016/j.carbpol.2018.01.069 96. Mazzanti V, Malagutti L, Mollica F. FDM 3D printing
Volume 4 Issue 1 (2025) 19 doi: 10.36922/msam.8533

