Page 47 - MSAM-4-1
P. 47
Materials Science in Additive Manufacturing TPMS for perfect sound absorption
Availability of data Manuf. 2023;61:103344.
The data that support the findings of this study doi: 10.1016/j.addma.2022.103344
are openly available in the Science Data Bank 11. Wang C, Huang L. On the acoustic properties of parallel
(https://doi.org/10.57760/sciencedb.08074). arrangement of multiple micro-perforated panel
absorbers with different cavity depths. J Acoust Soc Am.
References 2011;130(1):208-218.
1. Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic doi: 10.1121/1.3596459
materials. Science. 2000;289(5485):1734-1736.
12. Qian YJ, Zhang J, Sun N, Kong DY, Zhang XX. Pilot study
doi: 10.1126/science.289.5485.1734 on wideband sound absorber obtained by adopting a serial-
2. Zhang S, Xia C, Fang N. Broadband acoustic cloak for parallel coupling manner. Appl Acoust. 2017;124:48-51.
ultrasound waves. Phys Rev Lett. 2011;106(2):024301. doi: 10.1016/j.apacoust.2017.03.021
doi: 10.1103/PhysRevLett.106.024301 13. Yan S, Wu J, Chen J, Xiong Y, Mao Q, Zhang X. Optimization
3. Yang M, Sheng P. Sound absorption structures: From porous design and analysis of honeycomb micro-perforated plate
media to acoustic metamaterials. Annu Rev Mater Res. broadband sound absorber. Appl Acoust. 2022;186:108487.
2017;47:83-114. doi: 10.1016/j.apacoust.2021.108487
doi: 10.1146/annurev-matsci-070616-124032 14. Shen C, Cummer SA. Harnessing multiple internal reflections
4. Liu CR, Wu JH, Lu K, Zhao ZT, Huang Z. Acoustical to design highly absorptive acoustic metasurfaces. Phys Rev
siphon effect for reducing the thickness in membrane-type Appl. 2018;9(5):054009.
metamaterials with low-frequency broadband absorption. doi: 10.1103/PhysRevApplied.9.054009
Appl Acoust. 2019;148:1-8.
15. Elayouch A, Addouche M, Khelif A. Extensive tailorability
doi: 10.1016/j.apacoust.2018.12.008 of sound absorption using acoustic metamaterials. J Appl
5. Zhao H, Wen J, Yang H, Lv L, Wen X. Backing effects on the Phys. 2018;124(15):155103.
underwater acoustic absorption of a viscoelastic slab with doi: 10.1063/1.5035129
locally resonant scatterers. Appl Acoust. 2014;76:48-51.
16. Yang W, An J, Chua CK, Zhou K. Acoustic absorptions of
doi: 10.1016/j.apacoust.2013.07.022 multifunctional polymeric cellular structures based on triply
6. Guo J, Fang Y, Jiang Z, Zhang X. An investigation on noise periodic minimal surfaces fabricated by stereolithography.
attenuation by acoustic liner constructed by Helmholtz Virtual Phys Prototyp. 2020;15(2):242-249.
resonators with extended necks. J Acoust Soc Am. doi: 10.1080/17452759.2020.1740747
2021;149(1):70-81.
17. Lin C, Wen G, Yin H, Wang ZP, Liu J, Xie YM. Revealing
doi: 10.1121/10.0002990 the sound insulation capacities of TPMS sandwich panels.
7. Zhang X, Wu J, Mao Q, Zhou W, Xiong Y. Design of a J Sound Vib. 2022;540:117303.
honeycomb-microperforated panel with an adjustable doi: 10.1016/j.jsv.2022.117303
sound absorption frequency. Appl Acoust. 2020;164:107246.
18. Zhang M, Liu C, Deng M, Li Y, Li J, Wang D. Graded
doi: 10.1016/j.apacoust.2020.107246 minimal surface structures with high specific strength for
8. Leclaire P, Umnova O, Dupont T, Panneton R. Acoustical broadband sound absorption produced by laser powder bed
properties of air-saturated porous material with fusion. Coatings. 2023;13(11):1950.
periodically distributed dead-end pores. J Acoust Soc Am. doi: 10.3390/coatings13111950
2015;137(4):1772-1782.
19. Li Z, Zhou Y, Kong X, et al. Sound absorption performance of a
doi: 10.1121/1.4916712
micro-perforated plate sandwich structure based on selective
9. Costa-Baptista J, Fotsing ER, Mardjono J, Therriault D, laser melting. Virtual Phys Prototyp. 2024;19(1):e2321607.
Ross A. Design and fused filament fabrication of multilayered doi: 10.1080/17452759.2024.2321607
microchannels for subwavelength and broadband sound
absorption. Addit Manuf. 2022;55:102777. 20. Xue Y, Paige Nobles L, Sharma B, Stuart Bolton J. Designing
hybrid aerogel-3D printed absorbers for simultaneous
doi: 10.1016/j.addma.2022.102777
low frequency and broadband noise control. Mater Des.
10. Pierre J, Iervolino F, Farahani RD, Piccirelli N, Lévesque M, 2024;242:113026.
Therriault D. Material extrusion additive manufacturing
of multifunctional sandwich panels with load-bearing doi: 10.1016/j.matdes.2024.113026
and acoustic capabilities for aerospace applications. Addit 21. Wang Z, Guo Z, Li Z, Zeng K. Design, manufacture,
Volume 4 Issue 1 (2025) 20 doi: 10.36922/msam.5737

