Page 108 - MSAM-4-3
P. 108

Materials Science in Additive Manufacturing                           Heterostructures of A131 steel by DED



            29.  Li D, Fan G, Huang X, et al. Enhanced strength in pure Ti   changing  composition with  elemental powder mixes and
               via design of alternating coarse- and fine-grain layers. Acta   particle size’ effect in fabrication process.  J  Mater Proc
               Mater. 2021;206:116627.                            Technol. 2018;255:96-104.
               doi: 10.1016/j.actamat.2021.116627                 doi: 10.1016/j.jmatprotec.2017.12.010
            30.  Tan  C, Li  Q, Yao  X,  et al.  Machine  learning  customized   39.  Donizete Borba TM, Wagner DF, Leonardo DOT,
               novel material for energy-efficient 4D printing.  Adv Sci.   Cardoso R Jr. Assessment of the weldability of EH36 TMCP
               2023;10(10):2206607.                               shipbuilding steel welded by high heat input submerged arc
                                                                  welding. Weld Int. 2017;31(3):184-195.
               doi: 10.1002/advs.202206607
                                                                  doi: 10.1080/09507116.2016.1218619
            31.  National Standardization Administration of the People’s
               Republic of China. GB/T 36165-2018.  Determination of   40.  Potez L, Lapasset G, Kubin L. Jerky flow (the PLC effect)
               Average Grain Size of Metal -- Electron Backscatter Dirffraction   in  Ll2  Al3Ti-based  alloys.  Scr Metallurgica Mater.  1992;
               (EBSD) Method.  Beijing:  National  Standardization   26(5):841-846.
               Administration of the People’s Republic of China; 2018.
                                                                  doi: 10.1016/0956-716X(92)90449-O
            32.  Plimpton S. Fast parallel algorithms for short-range   41.  Hsu WC, Shen TE, Liang YC, Yeh JW, Tsai CW.  In situ
               molecular dynamics. J Comput Phys. 1995;117(1):1-19.
                                                                  analysis of the portevin-le chatelier effect from low to high-
               doi: 10.1006/jcph.1995.1039                        entropy alloy in equal HfNbTaTiZr system.  Acta Mater.
                                                                  2023;253:118981.
            33.  Zhan JM, Yao XH, Han F. An approach of peridynamic
               modeling associated with molecular dynamics for fracture      doi: 10.1016/j.actamat.2023.118981
               simulation of particle reinforced metal matrix composites.   42.  Ananthakrishna G. Current theoretical approaches
               Compos Struct. 2020;250:112613.
                                                                  to collective behavior of dislocations.  Phys Rep.  2007;
               doi: 10.1016/j.compstruct.2020.112613              440(4-6):113-259.
            34.  Proville  L,  Choudhury A.  Unravelling  the  jerky  glide  of      doi: 10.1016/j.physrep.2006.10.003
               dislocations in body-centred cubic crystals.  Nat Mater.   43.  Sarkar A, Maloy SA, Murty KL. Investigation of
               2024;23(1):47-51.
                                                                  portevin-le chatelier effect in HT-9 steel. Mater Sci Eng A.
               doi: 10.1038/s41563-023-01728-5                    2015;631:120-125.
            35.  Etesami SA, Asadi E. Molecular dynamics for near melting      doi: 10.1016/j.msea.2015.02.022
               temperatures simulations of metals using modified   44.  Vahedi  Nemani  A,  Ghaffari  M,  Nasiri  A.  Comparison of
               embedded-atom method. J Phys Chem Solids. 2018;112:61-72.
                                                                  microstructural characteristics and mechanical properties
               doi: 10.1016/j.jpcs.2017.09.001                    of shipbuilding steel plates fabricated by conventional
                                                                  rolling versus wire arc additive manufacturing. Add Manuf.
            36.  Lim H, Hale LM, Zimmerman JA, Battaile CC, Weinberger
               CR. A multi-scale model of dislocation plasticity in α-Fe:   2020;32:101086.
               Incorporating temperature, strain rate and non-schmid      doi: 10.1016/j.addma.2020.101086
               effects. Int J Plastic. 2015;73:100-118.
                                                               45.  Chen ZW, Phan MAL, Darvish K. Grain growth during
               doi: 10.1016/j.ijplas.2014.12.005                  selective laser melting of a co-cr-mo alloy.  J  Mater Sci.
                                                                  2017;52(12):7415-7427.
            37.  Vasques  CMA,  Cavadas  AMS,  Abrantes  JCC.
               Technology overview and investigation of the quality of a      doi: 10.1007/s10853-017-0975-z
               3D-printed  maraging  steel  demonstration  part.  MSAM.   46.  Kok Y, Tan XP, Wang P, et al. Anisotropy and heterogeneity
               2025;4(2):025040002.
                                                                  of microstructure and mechanical properties in metal
               doi: 10.36922/msam025040002                        additive manufacturing: A  critical review.  Mater Des.
                                                                  2018;139:565-586.
            38.  Li W, Yan L, Chen X, Zhang J, Zhang X, Liou F. Directed
               energy depositing a new Fe-Cr-Ni alloy with gradually      doi: 10.1016/j.matdes.2017.11.021














            Volume 4 Issue 3 (2025)                         15                        doi: 10.36922/MSAM025220038
   103   104   105   106   107   108   109   110   111   112   113