Page 164 - MSAM-4-3
P. 164

Materials Science in Additive Manufacturing                 L-PBF Ti-10Ta-2Nb-2Zr: Microstructure and Strength



               doi: 10.1016/j.jallcom.2020.154178                 doi: 10.1016/j.biomaterials.2011.07.019
            22.  Brodie EG, Medvedev AE, Frith JE, Dargusch MS,   31.  Dilip JJS, Zhang S, Teng C,  et al. Influence of processing
               Fraser  HL, Molotnikov A. Remelt processing and    parameters on the evolution of melt pool, porosity, and
               microstructure of selective laser melted Ti25Ta.  J  Alloys   microstructures in Ti-6Al-4V  alloy parts  fabricated by
               Compd. 2020;820:153082.                            selective laser melting. Prog Addit Manuf. 2017;2(3):157-167.
               doi: 10.1016/j.jallcom.2019.153082                 doi: 10.1007/s40964-017-0030-2
            23.  Ji G, Zhou Z, Meng F,  et al. Effect of Zr addition on the   32.  Xiang S, Yuan Y, Zhang C, Chen J. Effects of process
               local structure and mechanical properties of Ti-Ta-Nb-Zr   parameters on the corrosion resistance and biocompatibility
               refractory high-entropy alloys.  J  Mater Res Technol.   of Ti6Al4V parts fabricated by selective laser melting. ACS
               2022;19:4428-4438.                                 Omega. 2022;7(7):5954-5961.
               doi: 10.1016/j.jmrt.2022.06.160                    doi: 10.1021/acsomega.1c06246
            24.  Biesiekierski A, Lin J, Li Y, Ping D, Yamabe-Mitarai Y, Wen C.   33.  Pesode P, Barve S. A review-metastable β titanium alloy for
               Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical   biomedical applications. J Eng Appl Sci. 2023;70(1):25.
               applications. Acta Biomater. 2016;32:336-347.      doi: 10.1186/s44147-023-00196-7
               doi: 10.1016/j.actbio.2015.12.010               34.  Liu CC, Li YHZ, Gu J, Song M. Phase transformation in
            25.  Zhenhuan W, Yu D, Junsi L,  et al. Physiochemical and   titanium alloys: A  review.  Trans Nonferrous Metals Soc
               biological evaluation of SLM-manufactured Ti-10Ta-2Nb-  China. 2024;34(10):3093-3117.
               2Zr alloy for biomedical implant applications.  Biomed      doi: 10.1016/S1003-6326(24)66597-0
               Mater. 2020;15(4):045017.
                                                               35.  Banerjee D, Williams JC. Perspectives on titanium science
               doi: 10.1088/1748-605X/ab7ff4                      and technology. Acta Mater. 2013;61(3):844-879.
            26.  Morita A, Fukui H, Tadano H, Hayashi S, Hasegawa J,      doi: 10.1016/j.actamat.2012.10.043
               Niinomi M. Alloying titanium and tantalum by cold
               crucible levitation melting (CCLM) furnace. Mater Sci Eng   36.  Ahmed T, Rack HJ. Phase transformations during cooling in
               A. 2000;280(1):208-213.                            α+β titanium alloys. Mater Sci Eng A. 1998;243(1-2):206-211.
               doi: 10.1016/S0921-5093(99)00668-1                 doi: 10.1016/S0921-5093(97)00802-2
            27.  Zhao D, Han C, Li Y,  et al. Improvement on mechanical   37.  Bania PJ. Beta titanium alloys and their role in the titanium
               properties and corrosion resistance of titanium-tantalum   industry. JOM. 1994;46(7):16-19.
               alloys in-situ fabricated via selective laser melting. J Alloys      doi: 10.1007/BF03220742
               Compd. 2019;804:288-298.
                                                               38.  Geetha M, Singh AK, Asokamani R, Gogia AK. Ti
               doi: 10.1016/j.jallcom.2019.06.307                 based biomaterials, the  ultimate choice  for orthopaedic
            28.  Soro N, Brodie EG, Abdal-hay A, Alali AQ, Kent D,   implants - A review. Prog Mater Sci. 2009;54(3):397-425.
               Dargusch  MS. Additive manufacturing of biomimetic      doi: 10.1016/j.pmatsci.2008.06.004
               titanium-tantalum  lattices  for  biomedical  implant
               applications. Mater Des. 2022;218:110688.       39.  Jamshidi P, Aristizabal M, Kong W,  et al. Selective laser
                                                                  melting of Ti-6Al-4V: The impact of post-processing on the
               doi: 10.1016/j.matdes.2022.110688                  tensile, fatigue and biological properties for medical implant
            29.  Yoo DJ. Computer-aided porous scaffold design for tissue   applications. Materials. 2020;13(12):2813.
               engineering using triply periodic minimal surfaces.  Int J      doi: 10.3390/ma13122813
               Precis Eng Manuf. 2011;12(1):61-71.
                                                               40.  Cho JY, Xu W, Brandt M, Qian M. Selective laser melting-
               doi: 10.1007/s12541-011-0008-9                     fabricated Ti-6Al-4V alloy: Microstructural inhomogeneity,
                                                                  consequent variations in elastic modulus and implications.
            30.  Yoo DJ. Porous scaffold design using the distance field
               and triply periodic minimal surface models. Biomaterials.   Opt Laser Technol. 2019;111:664-670.
               2011;32(31):7741-7754.                             doi: 10.1016/j.optlastec.2018.08.052












            Volume 4 Issue 3 (2025)                         16                        doi: 10.36922/MSAM025220044
   159   160   161   162   163   164   165   166