Page 164 - MSAM-4-3
P. 164
Materials Science in Additive Manufacturing L-PBF Ti-10Ta-2Nb-2Zr: Microstructure and Strength
doi: 10.1016/j.jallcom.2020.154178 doi: 10.1016/j.biomaterials.2011.07.019
22. Brodie EG, Medvedev AE, Frith JE, Dargusch MS, 31. Dilip JJS, Zhang S, Teng C, et al. Influence of processing
Fraser HL, Molotnikov A. Remelt processing and parameters on the evolution of melt pool, porosity, and
microstructure of selective laser melted Ti25Ta. J Alloys microstructures in Ti-6Al-4V alloy parts fabricated by
Compd. 2020;820:153082. selective laser melting. Prog Addit Manuf. 2017;2(3):157-167.
doi: 10.1016/j.jallcom.2019.153082 doi: 10.1007/s40964-017-0030-2
23. Ji G, Zhou Z, Meng F, et al. Effect of Zr addition on the 32. Xiang S, Yuan Y, Zhang C, Chen J. Effects of process
local structure and mechanical properties of Ti-Ta-Nb-Zr parameters on the corrosion resistance and biocompatibility
refractory high-entropy alloys. J Mater Res Technol. of Ti6Al4V parts fabricated by selective laser melting. ACS
2022;19:4428-4438. Omega. 2022;7(7):5954-5961.
doi: 10.1016/j.jmrt.2022.06.160 doi: 10.1021/acsomega.1c06246
24. Biesiekierski A, Lin J, Li Y, Ping D, Yamabe-Mitarai Y, Wen C. 33. Pesode P, Barve S. A review-metastable β titanium alloy for
Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical biomedical applications. J Eng Appl Sci. 2023;70(1):25.
applications. Acta Biomater. 2016;32:336-347. doi: 10.1186/s44147-023-00196-7
doi: 10.1016/j.actbio.2015.12.010 34. Liu CC, Li YHZ, Gu J, Song M. Phase transformation in
25. Zhenhuan W, Yu D, Junsi L, et al. Physiochemical and titanium alloys: A review. Trans Nonferrous Metals Soc
biological evaluation of SLM-manufactured Ti-10Ta-2Nb- China. 2024;34(10):3093-3117.
2Zr alloy for biomedical implant applications. Biomed doi: 10.1016/S1003-6326(24)66597-0
Mater. 2020;15(4):045017.
35. Banerjee D, Williams JC. Perspectives on titanium science
doi: 10.1088/1748-605X/ab7ff4 and technology. Acta Mater. 2013;61(3):844-879.
26. Morita A, Fukui H, Tadano H, Hayashi S, Hasegawa J, doi: 10.1016/j.actamat.2012.10.043
Niinomi M. Alloying titanium and tantalum by cold
crucible levitation melting (CCLM) furnace. Mater Sci Eng 36. Ahmed T, Rack HJ. Phase transformations during cooling in
A. 2000;280(1):208-213. α+β titanium alloys. Mater Sci Eng A. 1998;243(1-2):206-211.
doi: 10.1016/S0921-5093(99)00668-1 doi: 10.1016/S0921-5093(97)00802-2
27. Zhao D, Han C, Li Y, et al. Improvement on mechanical 37. Bania PJ. Beta titanium alloys and their role in the titanium
properties and corrosion resistance of titanium-tantalum industry. JOM. 1994;46(7):16-19.
alloys in-situ fabricated via selective laser melting. J Alloys doi: 10.1007/BF03220742
Compd. 2019;804:288-298.
38. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti
doi: 10.1016/j.jallcom.2019.06.307 based biomaterials, the ultimate choice for orthopaedic
28. Soro N, Brodie EG, Abdal-hay A, Alali AQ, Kent D, implants - A review. Prog Mater Sci. 2009;54(3):397-425.
Dargusch MS. Additive manufacturing of biomimetic doi: 10.1016/j.pmatsci.2008.06.004
titanium-tantalum lattices for biomedical implant
applications. Mater Des. 2022;218:110688. 39. Jamshidi P, Aristizabal M, Kong W, et al. Selective laser
melting of Ti-6Al-4V: The impact of post-processing on the
doi: 10.1016/j.matdes.2022.110688 tensile, fatigue and biological properties for medical implant
29. Yoo DJ. Computer-aided porous scaffold design for tissue applications. Materials. 2020;13(12):2813.
engineering using triply periodic minimal surfaces. Int J doi: 10.3390/ma13122813
Precis Eng Manuf. 2011;12(1):61-71.
40. Cho JY, Xu W, Brandt M, Qian M. Selective laser melting-
doi: 10.1007/s12541-011-0008-9 fabricated Ti-6Al-4V alloy: Microstructural inhomogeneity,
consequent variations in elastic modulus and implications.
30. Yoo DJ. Porous scaffold design using the distance field
and triply periodic minimal surface models. Biomaterials. Opt Laser Technol. 2019;111:664-670.
2011;32(31):7741-7754. doi: 10.1016/j.optlastec.2018.08.052
Volume 4 Issue 3 (2025) 16 doi: 10.36922/MSAM025220044

