Page 163 - MSAM-4-3
P. 163
Materials Science in Additive Manufacturing L-PBF Ti-10Ta-2Nb-2Zr: Microstructure and Strength
processing parameters can be obtained by contacting the 11. Niinomi M, Boehlert CJ. Titanium alloys for biomedical
corresponding author. applications. In: Advances in Metallic Biometerials. Berlin:
Springer; 2015. p. 179-213.
References doi: 10.1007/978-3-662-46836-4_8
1. Wu H, Chen X, Kong L, Liu P. Mechanical and biological 12. Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy
properties of Ti and its alloys for oral implant with design, processing, and performance of Titanium alloys as
preparation techniques: A review. Materials (Basel). biomedical materials. Int Mater Rev. 2021;66(2):114-139.
2023;16(21):6860.
doi: 10.1080/09506608.2020.1735829
doi: 10.3390/ma16216860
13. Niinomi M. Mechanical biocompatibilities of titanium
2. Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium alloys for biomedical applications. J Mech Behav Biomed
in biomedical applications-properties and fabrication: A review. Mater. 2008;1(1):30-42.
J Biomater Tissue Eng. 2015;5(8):593-619.
doi: 10.1016/j.jmbbm.2007.07.001
doi: 10.1166/jbt.2015.1361
14. Huang S, Sing SL, De Looze G, Wilson R, Yeong WY.
3. Zhang Y, Xiu P, Jia Z, et al. Effect of vanadium released from Laser powder bed fusion of titanium-tantalum alloys:
micro-arc oxidized porous Ti6Al4V on biocompatibility Compositions and designs for biomedical applications.
in orthopedic applications. Colloids Surf B Biointerfaces. J Mech Behav Biomed Mater. 2020;108:103775.
2018;169:366-374.
doi: 10.1016/j.jmbbm.2020.103775
doi: 10.1016/j.colsurfb.2018.05.044
15. Fuerst J, Medlin D, Carter M, Sears J, Vander Voort G.
4. Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of LASER additive manufacturing of titanium-tantalum alloy
Ti-alloys for long-term implantation. J Mech Behav Biomed structured interfaces for modular orthopedic devices. JOM.
Mater. 2013;20:407-415. 2015;67(4):775-780.
doi: 10.1016/j.jmbbm.2012.11.014 doi: 10.1007/s11837-015-1345-4
5. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, 16. Sing SL, Yeong WY, Wiria FE. Selective laser melting of
Patoor E. Mechanical properties of low modulus β titanium titanium alloy with 50 wt% tantalum: Microstructure and
alloys designed from the electronic approach. J Mech Behav mechanical properties. J Alloys Compd. 2016;660:461-470.
Biomed Mater. 2010;3(8):565-573. doi: 10.1016/j.jallcom.2015.11.141
doi: 10.1016/j.jmbbm.2010.07.001 17. Plaine AH, Silva MR, Bolfarini C. Effect of thermo-
6. Han L, Che S. An overview of materials with triply mechanical treatments on the microstructure and
periodic minimal surfaces and related geometry: From mechanical properties of the metastable β-type Ti-35Nb-
biological structures to self‐assembled systems. Adv Mater. 7Zr-5Ta alloy. Mater Res. 2018;22(1):e20180462.
2018;30(17):e1705708. doi: 10.1590/1980-5373-mr-2018-0462
doi: 10.1002/adma.201705708 18. Ummethala R, Karamched PS, Rathinavelu S, et al. Selective
7. Learmonth ID, Young C, Rorabeck C. The operation of the century: laser melting of high-strength, low-modulus Ti–35Nb–7Zr–
Total hip replacement. Lancet. 2007;370(9597):1508-1519. 5Ta alloy. Materialia. 2020;14:100941.
doi: 10.1016/S0140-6736(07)60457-7 doi: 10.1016/j.mtla.2020.100941
8. khan B, Kumar S. Implementation of Triply Periodic Minimal 19. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB.
Surface (TPMS) Structure in Mesenchymal Stem Cell Manufacture by selective laser melting and mechanical
Differentiation. United States: Research Square; 2022. behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scrip
Mater. 2011;65(1):21-24.
doi: 10.21203/rs.3.rs-2156625/v1
doi: 10.1016/j.scriptamat.2011.03.024
9. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR.
Permeability versus design in TPMS scaffolds. Materials 20. Hao YL, Yang R, Niinomi M, et al. Young’s modulus and
(Basel). 2019;12(8):1313. mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to
α” martensite. Metall Mater Trans A. 2002;33(10):3137-3144.
doi: 10.3390/ma12081313
doi: 10.1007/s11661-002-0299-7
10. Chen LY, Cui YW, Zhang LC. Recent development in beta
titanium alloys for biomedical applications. Metals (Basel). 21. Yang K, Wang J, Tang H, Li Y. Additive manufacturing
of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by
2020;10(9):1139.
selective electron beam melting (SEBM). J Alloys Compd.
doi: 10.3390/met10091139 2020;826:154178.
Volume 4 Issue 3 (2025) 15 doi: 10.36922/MSAM025220044

