Page 163 - MSAM-4-3
P. 163

Materials Science in Additive Manufacturing                 L-PBF Ti-10Ta-2Nb-2Zr: Microstructure and Strength



            processing parameters can be obtained by contacting the   11.  Niinomi M, Boehlert CJ. Titanium alloys for  biomedical
            corresponding author.                                 applications. In: Advances in Metallic Biometerials. Berlin:
                                                                  Springer; 2015. p. 179-213.
            References                                            doi: 10.1007/978-3-662-46836-4_8
            1.   Wu H, Chen X, Kong L, Liu P. Mechanical and biological   12.  Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy
               properties of Ti and its alloys for oral implant with   design, processing, and performance of  Titanium alloys as
               preparation techniques: A  review.  Materials (Basel).   biomedical materials. Int Mater Rev. 2021;66(2):114-139.
               2023;16(21):6860.
                                                                  doi: 10.1080/09506608.2020.1735829
               doi: 10.3390/ma16216860
                                                               13.  Niinomi M. Mechanical biocompatibilities of titanium
            2.   Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium   alloys for biomedical applications.  J  Mech Behav Biomed
               in biomedical applications-properties and fabrication: A review.   Mater. 2008;1(1):30-42.
               J Biomater Tissue Eng. 2015;5(8):593-619.
                                                                  doi: 10.1016/j.jmbbm.2007.07.001
               doi: 10.1166/jbt.2015.1361
                                                               14.  Huang S, Sing SL, De Looze G, Wilson R, Yeong WY.
            3.   Zhang Y, Xiu P, Jia Z, et al. Effect of vanadium released from   Laser powder bed fusion of titanium-tantalum alloys:
               micro-arc oxidized porous Ti6Al4V on biocompatibility   Compositions  and  designs  for  biomedical  applications.
               in orthopedic applications.  Colloids Surf B Biointerfaces.   J Mech Behav Biomed Mater. 2020;108:103775.
               2018;169:366-374.
                                                                  doi: 10.1016/j.jmbbm.2020.103775
               doi: 10.1016/j.colsurfb.2018.05.044
                                                               15.  Fuerst J, Medlin D, Carter M, Sears J, Vander Voort G.
            4.   Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of   LASER additive manufacturing of titanium-tantalum alloy
               Ti-alloys for long-term implantation. J Mech Behav Biomed   structured interfaces for modular orthopedic devices. JOM.
               Mater. 2013;20:407-415.                            2015;67(4):775-780.
               doi: 10.1016/j.jmbbm.2012.11.014                   doi: 10.1007/s11837-015-1345-4
            5.   Laheurte P, Prima  F,  Eberhardt A, Gloriant T, Wary M,   16.  Sing SL, Yeong WY, Wiria FE. Selective laser melting of
               Patoor E. Mechanical properties of low modulus β titanium   titanium alloy with 50 wt% tantalum: Microstructure and
               alloys designed from the electronic approach. J Mech Behav   mechanical properties. J Alloys Compd. 2016;660:461-470.
               Biomed Mater. 2010;3(8):565-573.                   doi: 10.1016/j.jallcom.2015.11.141
               doi: 10.1016/j.jmbbm.2010.07.001                17.  Plaine AH, Silva MR, Bolfarini C. Effect of thermo-
            6.   Han  L,  Che  S.  An  overview  of  materials  with  triply   mechanical  treatments  on  the  microstructure  and
               periodic minimal surfaces and related geometry: From   mechanical properties of the metastable  β-type  Ti-35Nb-
               biological structures to self‐assembled systems. Adv Mater.   7Zr-5Ta alloy. Mater Res. 2018;22(1):e20180462.
               2018;30(17):e1705708.                              doi: 10.1590/1980-5373-mr-2018-0462
               doi: 10.1002/adma.201705708                     18.  Ummethala R, Karamched PS, Rathinavelu S, et al. Selective
            7.   Learmonth ID, Young C, Rorabeck C. The operation of the century:   laser melting of high-strength, low-modulus Ti–35Nb–7Zr–
               Total hip replacement. Lancet. 2007;370(9597):1508-1519.  5Ta alloy. Materialia. 2020;14:100941.
               doi: 10.1016/S0140-6736(07)60457-7                 doi: 10.1016/j.mtla.2020.100941
            8.   khan B, Kumar S. Implementation of Triply Periodic Minimal   19.  Zhang  LC,  Klemm  D,  Eckert  J,  Hao  YL,  Sercombe  TB.
               Surface (TPMS) Structure in Mesenchymal Stem Cell   Manufacture by selective laser melting and mechanical
               Differentiation. United States: Research Square; 2022.  behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy.  Scrip
                                                                  Mater. 2011;65(1):21-24.
               doi: 10.21203/rs.3.rs-2156625/v1
                                                                  doi: 10.1016/j.scriptamat.2011.03.024
            9.   Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR.
               Permeability versus design in TPMS scaffolds.  Materials   20.  Hao YL, Yang R, Niinomi M,  et al. Young’s modulus and
               (Basel). 2019;12(8):1313.                          mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to
                                                                  α” martensite. Metall Mater Trans A. 2002;33(10):3137-3144.
               doi: 10.3390/ma12081313
                                                                  doi: 10.1007/s11661-002-0299-7
            10.  Chen LY, Cui YW, Zhang LC. Recent development in beta
               titanium alloys for biomedical applications. Metals (Basel).   21.  Yang K, Wang J, Tang H, Li Y. Additive manufacturing
                                                                  of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by
               2020;10(9):1139.
                                                                  selective electron beam melting (SEBM).  J  Alloys Compd.
               doi: 10.3390/met10091139                           2020;826:154178.

            Volume 4 Issue 3 (2025)                         15                        doi: 10.36922/MSAM025220044
   158   159   160   161   162   163   164   165   166